
 Advanced search

Linux Journal Issue #124/August 2004

Features

Ultimate Linux Box 2004 by Paul Bibaud, Jesse Keating, Cosmo King,
Eric Logan, Micah Spacek, Tim Lee and Don Marti

We take a peek at a no-compromises system that will give
everyone some PC construction ideas.

Linux on Linksys Wi-Fi Routers by James Ewing
This sub-$100 wireless box has 16MB of RAM and a 125MHz
processor. Put it to work.

Indepth

2004 Editors' Choice Awards by LJ Staff
Our newly expanded team of experts comes to some surprising
conclusions on the year's best products and projects.

Linux Serial Consoles for Servers and Clusters by Matthew E. Hoskins
Keep your servers under control with one cable, not a rackload.

Distributed Caching with Memcached by Brad Fitzpatrick
Speed up your database app with a simple, fast caching layer
that uses your existing servers' spare memory.

Data Acquisition with Comedi by Caleb Tennis
Whatever you're discovering or inventing, now you can use any
data acquisition card with the same API.

Declic: Linux 2.6 on the International Space Station by Taco Walstra
Linux fits into this new research program in several ways, from
meeting real-time requirements with the 2.6 kernel to offering a
prototyping platform for microcontroller code.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/124/7563.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7322.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7564.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7206.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7451.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7332.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190.html

Embedded

Driving Me Nuts by Greg Kroah-Hartman

Toolbox

At the Forge Weblogs and Slash by Reuven M. Lerner
Kernel Korner Storage Improvements in 2.6 and for 2.7 by Paul E.
McKenney
Cooking with Linux The Ultimate Cooking Box by Marcel Gagné

Columns

Linux for Suits Missing Pieces by Doc Searls
EOF Open Source Is for Pigs by Evan Leibovitch

Departments

From the Editor
Letters
upFRONT
On The Web
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7582.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7585.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7321.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7592.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7584.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7602.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7589.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7550.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7586.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7529.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7588.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Ultimate Linux Box 2004

Paul Bibaud

Jesse Keating

Cosmo King

Eric Logan

Micah Spacek

Tim Lee

Don Marti

Issue #124, August 2004

As four-processor x86-64 boards take over the high end of homebrew PCs, we
take a look at the systems you'll be building next year.

You might say that the trend to 64-bit Linux systems started in 1994 when Jon
“maddog” Hall, then at Digital, gave Linus Torvalds an Alpha workstation. But
the mass market started to make the move last year when AMD introduced the
first x86-64 processors. AMD calls the architecture AMD64, and Intel has
followed up with compatible processors under the name IA-32e. We selected a
two-way AMD64 system as Ultimate Linux Box last year.

Our Ultimate Linux Boxes have sported two processors since 2000, and it's time
to make the move to four. Now that major vendors are offering Linux systems
in sizes up to SGI's 256 Itanium processors in its Altix 3000 series, we have to
make it clear that this is the ultimate box you can build, not the ultimate box
that anyone has ever built.

Although we probably say it every year, there's never been a better selection of
Linux-compatible hardware on the market. IBM has launched a major
marketing push for Linux on POWER, and some people are talking up Apple's
PowerPC-based Power Mac G5 as great for Linux. The Ultimate Linux Box

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

always has been about a system that readers can build, however; so we're
going to go where the commodity hardware is.

Timing for this article was a little awkward. Too late to make it into this year's
box, Tyan recently introduced the four-way SMP Thunder K8QS (S4880), which
is in a new, larger size known as SSI: 13" × 16" or 330mm × 407mm. Cases that
fit are rare. Still, it's the first industry-standard four-way, 64-bit motherboard,
and we're thinking about putting one like it into a tower case next year—a big
tower case, that is.

But, it's clear that four-way x86-64 motherboards are the new top of the line for
Linux box builders, so we're getting a head start on the trend by using one of
the rackmount bare-bones systems, the Celestica A8440. Both the Celestica and
another four-way, the Newisys 4300, are popular basic boxes on which Linux
box builders are developing complete systems.

 Recommended Hardware

Although user-group mailing lists and other community fora are great for
answering many technical questions, they tend to be less good for advice on
what hardware to buy. Unfortunately, you're likely to get secondhand media
reviews, justifications of random stuff someone recently bought and just plain
errors.

But that's fine, because the Linux scene already has an excellent source of
hardware recommendations—the system specs pages on the small Linux
vendors' sites. If someone in the Linux business is willing to take phone calls
about a particular piece of hardware and stays in business, that's a pretty good
sign.

Some of the hardware the small shops use is on the expensive side. You see a
lot of Supermicro and Tyan motherboards and Seagate and Maxtor hard drives,
for example. But the good news is high-quality PC hardware doesn't command
as much of a price premium as it should. Commentators make such a big deal
out of PC hardware being a commodity that people ignore the fact that even
commodities have different quality levels. As long as the “a PC is a PC” meme
stays current, the market undervalues quality hardware.

Linux vendors don't mind home builders free riding on their hard-earned
hardware choices, because hardly anyone builds PCs for work. If you bookmark
a company's hardware choices as a reference for your home projects, you're
likely to come back to them when it's time to order.

 Buy or Build?

If you're reading this far, you probably have strong opinions about your
system's details, including the visible parts. If you want a cool-looking case or a
weird combination of hardware, you're likely to want to build. You can save
some money that way too. When you build, you can splash out on expensive
boutique ball-bearing fans, heavy but quiet heat sinks and other small
hardware that's not cost effective for a vendor to use but that you can justify by
spreading its cost over several generations of electronics.

On the other hand, if you're trying to home-brew a digital content creation
workstation, you're likely to be out in no-man's-land searching for device
drivers for your video card. The top 3-D cards still have full support only with
proprietary drivers, so don't expect to treat a high-end 3-D system like a Linux
box. Where the low levels of the system are concerned, your workstation might
as well be a proprietary UNIX system, because you can't expect community
support when some drivers are closed off from your view and the view of the
experts on the linux-kernel mailing list. For now, get anything requiring high-
performance 3-D from a vendor that has a good working relationship with the
video card manufacturer and whose support you trust.

A good middle ground between buying and building is to work with a friendly
Linux system vendor that lets you customize the machines you order. It doesn't
cost any more to talk to someone on the phone than to use the Web
configurator, so it's a good idea to rough out the system you like, place a call
and get some feedback.

You might choose to go with a small, friendly vendor for your systems at work
and then build your own home machines. One advantage of getting systems
from a friendly Linux vendor is burn-in. I suspect the engineers at Linux
vendors have unresolved anger issues toward hardware—or maybe they want
to cut back on the number of returned systems. Pogo uses a battery of burn-in
tests based on the Cerberus Test Control System, which traces its heritage back
to the original VA Research.

Enough introduction, it's time for the parts list.

If you buy no other hardware this year...

...get a pre-ban HDTV card. In a major setback for those who choose to build
their own entertainment devices, the US Federal Communications Commission
has approved the so-called Broadcast Flag regulation for high-definition
television (HDTV). That's bad news for Linux boxes, Ultimate and otherwise.
Future HDTV-capable tuner cards will be required to enforce a to-be-

determined digital rights management (DRM) regime. This is one product
category that won't get better next year; it'll be worse because of mandatory
DRM. If you live in the US, if you buy no other PC hardware before the end of
2004, pick up a pcHDTV card.

The pcHDTV HD-2000 Hi Definition Television Card works with the open-source
player Xine and it will be illegal to sell next year. You'll still be able to use the
card you stashed this year, though. We give you fair warning right now that in
2005 Linux Journal will cover projects that require pre-ban cards. Buy now or
kick yourself next year.

 Ultimate Linux Box 2004 Hardware

• Motherboard/chassis: Celestica A8440 (AMD-8131 Chipset)
High-end motherboards are going to onboard Gigabit Ethernet. As with
other server-oriented hardware, all the commonly used chipsets have
good Linux support.

• Memory: 16x PC2700 2048MB ECC REG (32GB)
• Network interfaces: BCM5704 10/100/1000 x 2
• RAID: Adaptec ASR2200S
• Storage: Seagate ST336607LC 36GB U320 SCSI HDD x 4

These aren't the fastest Seagate drives available, but with 32GB of
memory, if we touch them we're either doing something wrong or running
a benchmark. It's an easy upgrade to 15,000 RPM drives.

• Video: Appian Rushmore Quad-DVI PCI
Appian's Rushmore card offers four displays at up to 2048×1536
resolution. With everything working correctly, that would be 25,165,824
pixels or 32 times the area of a conventional 1024 × 768 screen. At press
time, we still were dealing with an interesting issue with XFree86 support
for this card. Instead of four displays, we were getting two identical copies
of two displays. Check out our Web site for the resolution to the X issue.

• Audio: Creative Labs SB Audigy
• Power Supply: 500W Hotswap x 3
• Miscellaneous: PC Floppy drive, IDE DVD-ROM, USB

 Conclusions

With Fedora Core release 1.92 (FC2 Test 3) installed, the Ultimate Linux Box put
up good numbers on the benchmarks, as might be expected.

Yes, with this much RAM we took the opportunity to build a kernel in a tmpfs
partition. 2.6.4 with all defaults set completed in 1 minute 41 seconds. More
detailed benchmark results follow.

Dbench 100:

#/usr/sbin/dbench 100
Throughput 133.97 MB/sec 100 procs

Bonnie++:

#bonnie++ -s 65536

Openssl Speed:

#openssl -speed

 sign verify sign/s verify/s
rsa 512 bits 0.0003s 0.0000s 3720.8 42628.2
rsa 1024 bits 0.0010s 0.0001s 1005.9 16850.9
rsa 2048 bits 0.0057s 0.0002s 174.5 5674.7
rsa 4096 bits 0.0375s 0.0006s 26.7 1691.6
 sign verify sign/s verify/s
dsa 512 bits 0.0002s 0.0002s 5506.3 4731.3
dsa 1024 bits 0.0005s 0.0006s 2033.5 1695.7
dsa 2048 bits 0.0016s 0.0019s 641.4 520.0

Hdparm:

#hdparm -t /dev/sda

 Timing buffered disk reads: 170 MB in 3.02 seconds = 56.28 MB/sec

 Acknowledgements

This year's Ultimate Linux Box team from Pogo except Don Marti, all are
credited as authors of this article. Cosmo King did the hands-on integration,
testing, troubleshooting and benchmarking. The text (and errors) was written
by Don Marti.

Resources for this article: /article/7614.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7614.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Linux on Linksys Wi-Fi Routers

James Ewing

Issue #124, August 2004

Hacking this reliable, inexpensive platform can be your first step to a successful
wireless project. Chain access points together to cover a wide area, crank up
the power level, get more working space in Flash memory and more.

Wireless networking has become a mass-market technology, and the price of
802.11 or Wi-Fi gear has fallen to commodity levels. Several thousand
competitors with virtually identical products now are vying for your Wi-Fi
dollars. In this kind of competitive space it is natural for manufacturers to seek
the lowest cost alternatives. Their choice? Linux, of course.

Linux has become the premium OS for inexpensive, feature-packed wireless
networking. Linksys, one of the major wireless players, turned to Linux for its
802.11g next-generation Wi-Fi devices. When Cisco bought Linksys in early
2003, it inherited both the Linux devices and an emerging feud over the
unreleased GPL source code. After several months of lobbying by open-source
enthusiasts, Cisco relented and released the source.

The Linksys WRT54G product (Figure 1) is especially interesting due to its low
price and internal hardware. The WRT54G contains a four-port Ethernet hub, an
Ethernet WAN port, support for the new high-speed 54MB/s 802.11g wireless
protocol and backward compatibility with older 802.11b devices.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/124/7322f1.large.jpg

Figure 1. For under $100 US, the Linksys WRT54G is a capable Linux platform with 16MB of
RAM, a 125MHz processor and support for 802.11b and g.

But what the WRT54G lacks is what makes it interesting. Under the hood the
unit sports a 125MHz MIPS processor with 16MB of RAM. This is more than
enough horsepower to run some serious applications, so why not add some?

 Setting Up the Development Environment

The latest source on the Linksys site is about 145MB in size and contains a
complete toolchain for MIPS cross development (see “The Linksys WRT54G
Source Tree” sidebar).

Follow the instructions for creating symlink and PATH additions in the README
file in the WRT54G/src subdirectory. Then cd to the router subdirectory and
run make menuconfig. Keep the standard options for your first build, and
click through to create your configuration files. cd up one level to the WRT54G/
src directory and type make. That's all there is to it. A file called code.bin is
created in the WRT54G/image directory containing a compressed cramfs
filesystem and a Linux 2.4.20 kernel.

Now comes the scary part—how do you get this new firmware on to your
Linksys? There are two methods, by tftp or through the Web-based firmware
upgrade interface. I suggest you use the Web upgrade for your first try.

Surf to your Linksys box—the default address is 192.168.1.1—and log in. Select
Firmware Upgrade from the Administration menu and upload your code.bin

https://secure2.linuxjournal.com/ljarchive/LJ/124/7322f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7322f1.large.jpg

file. The router now restarts. Congratulations, you have just modded your
Linksys box.

 The Ping Hack

The existence of Linux on the WRT54G was discovered through a bug in the
ping utility in the Diagnostics menu. Firmware versions prior to 1.42.2 allowed
arbitrary code to be run from the ping window if surrounded by back-ticks. If
you have a box with the older firmware, try typing `ls -l /` in the ping
window's IP address field. Voilà—a listing of the root directory magically
appears.

The ping hack allows curious folks to explore their boxes without modifying the
source. But exploring by way of the ping window is slow and tedious. What we
really need is a shell on the box.

By expanding the ping hack in the source code, a custom firmware image can
be created with the full power of a Linux shell over the Web interface. See the
on-line Resources section URLs on how to create the command shell.

But why stop there? The default firmware's cramfs filesystem leaves 200K of
Flash memory free. There is room for many useful applications, such as telnet
or Secure Shell or perhaps even a VPN client or server.

 The wl Command

One useful command supplied by Linksys in binary form only is wl. The wl
command contains several dozen internal commands that control wireless
settings, including the popular power adjustment setting. Typing wl with no
parameters produces a complete list of its capabilities.

The default power setting on the WRT54G is 28 milliwatts, and this setting
cannot be changed externally. But by using the ping hack or a shell, you can
change this with wl, using the txpwr subcommand and a number between 1
and 84 milliwatts. This number raises or lowers the default power setting until
the next reboot.

Increasing the power setting or replacing the stock antennas may increase your
radio output and violate local laws. If you replace the stock antennas and lower
the power setting, your unit's range can be extended significantly while
remaining within legal radio power limits.

The WRT54G supports two external antennas and automatically balances
between them depending on which received the last active packet. When
adding a more powerful external antenna, this is not the setup that you want.

You need to force the unit to choose the high power antenna every time. This is
done with wl txant for receiving and wl antdiv for sending. A 0
parameter forces the left antenna coupling and a 1 forces the right, as you face
the front panel.

 Adding Secure Shell (SSH)

One enterprising individual ported the entire OpenSSH toolchain to the Linksys
box. Unfortunately, the size of the OpenSSH binary means that many standard
Linksys functions must be removed to make room. Plus, the resulting RAM
requirements are at the limits of available memory. What is needed is an SSH
server with a small memory footprint, and the Dropbear server fits the bill
nicely. Matt Johnson designed the Dropbear SSH dæmon specifically to run in
memory-constrained systems such as the Linksys.

The standard Linksys Linux implementation lacks many of the normal files
needed for multiuser Linux systems. Two of these—passwd and groups in the /
etc directory—are required by the vast majority of Linux applications. In order
to run the Dropbear server, we need to add these files to the Flash build.

By creating a passwd file with a root entry and no password and a matching
groups file, we can make Dropbear almost happy enough to run. These files are
copied to the /etc directory of the Flash image and are read-only on the Linksys.

When running, Dropbear also needs to access a private key that is used for SSH
handshaking and authentication, as well as a known_hosts file containing the
public keys of approved client machines. Generating the private key with the
dropbearkey program is a snap, but storing it on the Linksys is a bit trickier.

The WRT54G contains a hash map of key name and value pairs located in
nonvolatile storage called nvram. The bundled nvram utility and API allows us
to read and write to this memory area. The Dropbear private key and our public
key ID from id_rsa.pub in our home .ssh directory are stored in nvram and
copied to /var in the RAM disk on system start.

We compile Dropbear with support for key-file authorization and now have a
secure way to log in to the Linksys. If you need password login, the Dropbear
code can be patched to read the system password from nvram and to add the
ability for password logins as well.

 Increasing Flash Memory Compression

After adding such utilities as SSH and telnetd, you soon find your Linksys
firmware image bumping the limits of the Flash storage space on the device.

What you need is a filesystem with better compression than cramfs offers, one
that is compatible with the Linksys Linux kernel.

The default cramfs filesystem compresses data in 4K blocks, but compressing
on 4K boundaries limits the compression ratios that can be achieved. If we
could find a filesystem that compressed larger blocks of data but mapped
correctly to the page size in the OS, we would be able to put far more data and
applications in the firmware.

Phillip Lougher's squashfs filesystem compresses in 32K blocks and is
compatible with the 2.4 and 2.6 kernels. If we could move the Linksys firmware
from cramfs to squashfs, we might have enough room for a VPN client and
server in the system.

The Linksys kernel is a customized 2.4.20 source tree modified by Broadcom.
Broadcom is a leading 802.11g chip maker and is responsible for the CPU and
radio chips in the WRT54G. The squashfs tar file contains patches for the 2.4.20
through 2.4.22 kernels. Unfortunately, none of these applies cleanly to the
Broadcom kernel tree, so a bit of hand editing is necessary. The patch with the
fewest errors is the 2.4.22 version, which misses only one hunk when applied.
By reading the patch file and finding the missing hunk, you can patch the
missing code manually. You also can find a WRT54G-specific squashfs patch on
the Sveasoft Web site.

The Linksys WRT54G Source Tree

When you unpack the GPL source from Linksys, a directory structure is created
below the main WRT54G subdirectory. Here is an explanation of the important
parts.

The main tarball directory is /WRT54G. The main Makefile lives in /release/src.
After unpacking the source, read the README file here for instructions on how
to compile it.

All of the applications packaged with the Linksys unit are built from /release/
src/router. If you want to add applications, do it here and modify the Makefile
in this directory. This Linux kernel source tree has been modified by Broadcom,
the manufacturer of the wireless chips and CPU in the WRT54G. Add your
kernel modifications or patches here, /release/src/linux/linux.

You need to create a symlink from /opt to the brcm directory here, /tools/brcm.
Two of the subdirectories under brcm must be added to your PATH. See the
README file above for more information.

Patches and updated source code can be downloaded from Sveasoft. See
Resources for more information.

The next step is to edit the Broadcom kernel startup code and add a check for
squashfs. The do_mount.c file contains nearly identical code and can be used
as a guide when patching the startup.c file in the arch/mips/brcm-boards/
bcm947xx subdirectory.

After patching the kernel, the router Makefile must be patched to generate a
squashfs image and the Linux kernel configuration must be set to include
squashfs support.

This is well worth the effort, however. On recompile you should find some 500K
free bytes, compared to the stock cramfs filesystem.

 The Wireless Distribution System

The standard WRT54G is a wireless access point (AP). This means that it can talk
to wireless clients but not to other wireless access points. The ability to link it to
other access points using the Wireless Distribution System (WDS) or to act as a
wireless client is available using the wl command.

The Wireless Distribution System is an IEEE specification that allows wireless
access points to be chained together in a wide area network. Although there is
some performance penalty for doing this, the end result is an extended
wireless network with a much greater range than is available using single APs.

In order to link two APs together using WDS, their respective MAC addresses
must be known. Log in to each box and run the command wl wds [Mac
Addr], using the MAC address of the opposite machine's wireless interface. A
new device called wds0.2 then appears on each box and can be assigned an IP
address. Once the IP addresses are assigned and routing is set up between the
two boxes, you are able to ping one from the other.

Each WDS link results in data traffic doubling within the network. Because
802.11g is half duplex, this halves the network throughput. If the APs are
operating at 54MB/s, this is not much of a performance hit if you keep the links
to three or fewer.

 Client Mode Bridging

A simpler form of bridging is to set up one box as a client and have it link to an
access point. This is known as an Ethernet bridge, and several products exist
specifically for this purpose.

Client mode must be selected in the Linux kernel build menu and compiled in
the kernel. Once done, the kernel is built with a Broadcom binary-only module
that includes support for both AP and client modes. The command wl ap 0
sets the box to client mode, and wl join [SSID] links it to an access point.
If you set routing in the client using the access point's IP address as the default
gateway, the client automatically routes to the access point and your bridge
becomes active. Multiple AP and client pairs can be set up as an alternative to
the WDS method described above.

 The Power of Open Source

Linux has worked its way into everything from supercomputers to embedded
systems, including the Linksys. The move to Linux is the result of a highest
performance vs. lowest cost equation in a highly competitive market. Many
similar wireless routers, such as the Belkin F5D7230-4, the Buffalotech WBR-
G54 and the ASUS WL-300g and WL-500g, all use Linux in their firmware, and
the list expands daily. Unfortunately, none of these companies has complied
with GPL requirements and released the source code. Legal issues aside, these
products will lag far behind the Linksys open-source products in capabilities
and features for some time to come.

Linksys firmware builds containing amazing new features and capabilities
appear daily. At the time of this writing, firmware builds for the Linksys WRT54G
with support for VPNs, power adjustment, antenna select, client and WDS
mode, bandwidth management and a whole lot more are available from
multiple sources. The Internet combined with open-source code can change a
small SOHO wireless router into a powerful multifunctional device.

One word of caution: using experimental firmware could kill your box and
probably violates the Linksys warranty. If you are a casual user and need home
or small office access to a wireless network, this definitely is not for you. Use
the official Linksys firmware builds instead.

If, however, you are willing to risk your box and experiment with its potential,
you may find it is capable of much more than the specifications listed on the
product packaging—thanks to the power of Linux and open-source
development.

Resources for this article: /article/7609.

James Ewing (james.ewing@sveasoft.com) has been an entrepreneur and
software developer for more than 20 years. Originally from California, he
moved to Sweden a decade ago and now balances his time between a wife and
two children and practicing his authentic rendition of the Swedish chef on the
Muppet show.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7609.html
mailto:james.ewing@sveasoft.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

2004 Editors' Choice Awards

Linux Journal Staff

Issue #124, August 2004

We're excited about some great new Linux hardware and software, but we're
still depending on some old favorites too.

It's getting harder and harder to keep up with all the great Linux-related
products, services and projects out there. Fortunately, we've expanded our list
of contributing editors over the past year, and the panel for Editors' Choice is
looking pretty distinguished. So, without further ado, here's Editors' Choice
Awards 2004.

 Server Hardware: HP ProLiant BL20p G2

The HP ProLiant BL20p G2, which Ibrahim Haddad recommends, features two
Intel Xeon processors, onboard RAID, two hot-swap SCSI drives, three Gigabit
Ethernet interfaces, plus one more Ethernet connection for management, and
optional Fibre Channel. That would be nice in a 1U rackmount server, but this
box is a blade, and you can pack eight of them, plus up to six redundant power
supplies and your choice of two switches or other interconnect options, in a 6U
chassis.

If dinky laptop drives have been your reason not to drink the blade-ade, look
again at the new generation of heavyweight blade servers. Maybe it's time to
save the pizza boxes for pizza.

 Personal Computer or Workstation: IBM ThinkPad T41

Because each editor has different, strongly held opinions about his or her
personal work environment, we all were surprised when Doc Searls, Ibrahim
Haddad and Robert Love agreed on this: the IBM ThinkPad T41 is the Linux
laptop to have. They didn't simply agree on ThinkPad or ThinkPad T series—
they all use and like one particular model.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Doc praised the T41's “Industrial-strength looks and race-car feel”, and he loves
the high performance. “Everything works in Linux”, Robert commented. What
happened to the good old days, when we waited for kernel hackers to buy the
unsupported laptops first and get them going for the rest of us? The T41 has a
1400×1050 screen and IBM's famous three-year warranty and fast, competent
repair service.

Any hardware whose speed gets compared to greased rodents is at least
worthy of an honorable mention, and Greg Kroah-Hartman made that
comparison in his vote for the dual-processor version of the Apple Power Mac
G5, which is one Linux install away from being a great system. “It's fast, quiet
and pretty to look at. With full 64-bit goodness for a very cheap price, what's
not to like?” he wrote.

 Security Tool: Clam AntiVirus (AV)

Reuven Lerner writes, “ClamAV is giving the commercial virus-checking
programs a real run for their money. The combination of ClamAV and
SpamAssassin has reduced dramatically the amount of annoying (and
potentially dangerous) mail sent through my server.”

With this year's outbreak of e-mail worms for non-Linux platforms, ClamAV has
been getting quite a workout, and Linux admins on mailing lists report that
database update times are keeping up with or beating the proprietary
alternatives. And, yes, commercial support now is available.

 Web Browser or Client: Mozilla Firefox

“I am beginning to think that Mozilla is the new Emacs—a cross-platform
program that is solid and extensible”, Reuven writes. See the July 2004 issue for
a tutorial and sample code to get you started on developing Mozilla-based
apps, and see your nearest Linux desktop for a pop-up-free, standards-
compliant browsing experience.

 Graphics Software: The GIMP

The GIMP Project has released its eagerly anticipated version 2.0 and regained
its top spot as our editors' favorite graphics tool. Marcel Gagné writes, “With the
addition of EXIF handling, CMYK support and a cleaner, better interface, The
GIMP remains unchallenged on my Linux desktop.”

 Communication Tool: mutt

Although instant messaging apps and GUI mailers get all the demo time at
Linux events, the text-based mailer mutt, which lets you configure practically

anything, remains a cult classic. Greg writes, “without it there is no way I could
get through an e-mail feed of over 500 messages a day.”

Don Marti uses Ximian Evolution for its calendar and contact list but sticks with
mutt for mail. Use mutt together with Mozilla for convenient attachment
viewing, or for a healthy dose of mind-blowing tweaked-out config files, try a
Web search for “my .muttrc”.

 Desktop Software: GnuCash

“I began to use GnuCash several months ago and was very impressed by its
features”, Reuven writes. “It has an impressive array of features and can be
programmed using Guile. If you've never managed your finances before or are
shaky on the idea of double-entry bookkeeping, the built-in tutorial will help
you get started.” A financial tool without double entry is like a paint program
without layers.

 Software Library or Module: Pango

This is a new category, but it's about time we recognized library maintainers.
Library code saves time and prevents errors by letting people “outsource” parts
of apps. We're always happy to see developers use a good library instead of
reimplementing something from scratch. Reuven writes, “I want to thank all of
the hardworking people who have worked on Pango and the other
internationalization libraries and software that make non-Western scripts
usable with Linux. Thanks to you, billions of people who don't speak, read or
write English still can use open-source software. The fact that I can read and
write Hebrew e-mail with the standard version of Mozilla or documents with
the standard version of OpenOffice.org continues to impress me.”

 Development Tool: BitKeeper

Greg writes, “It makes my life dealing with zillions of kernel patches sane. It is
the only way I successfully can maintain seven different kernel trees and still
have time to sleep.”

Linus Torvalds contributed a stunner of a quote to a BitKeeper company press
release—“It's made me more than twice as productive”, he said. As if he was
slow before. With that kind of testimonial, BitKeeper deserves a slot in any
company's search for a new source code management system.

 Database: PostgreSQL

“I continue to love PostgreSQL and prefer it over MySQL because of its features,
stability, scalability, Unicode compatibility and adherence to standards”, Reuven

writes. “That said, the MySQL team is making impressive inroads, and I expect
to see them close the gap with PostgreSQL in the coming years. But for now, I
strongly recommend PostgreSQL to anyone who needs a relational database.”

Marcel concurs. “PostgreSQL is still number one for me”, he writes. “This is a
grown-up, powerful database, and the first I turn to when I need to create or
use database-enabled applications.”

 Mobile Device: Sharp Zaurus SL-6000 PDA

The latest Zaurus is Ibrahim Haddad's choice. Unlike previous Zauri, this one
features USB host support, so you can use it with your USB devices for storage,
networking and input. The screen is a pixel-licious 480×640, four times the area
of the original Zaurus and the same as the Japan-only Zaurus SL-C700 we
reviewed last year.

 Game: Really Simple Syndication (RSS)

Our editors are all business and turned up their noses at selecting favorite
games. These are the kind of people you want to hire to roll out your company
desktop systems. But even though it might not look like Quake or Frozen
Bubble when the boss walks by, there's a new hit game that Linux people are
playing on the Net, and whether you want to call it blogging or social software,
players are everywhere. It's like painting Dungeons and Dragons figures or
collecting baseball cards, but with real people.

The glue tying it all together is a simple XML-based syndication format called
RSS, which sites such as Technorati and software projects such as Planet are
using to bring together Web content in new ways. Who's a blog king and who's
a bozo? Pop in to Technorati to check the score.

Reuven points out that the all-in-one social network sites LinkedIn, Orkut and
Ryze aren't particularly useful, but he says they're “all scratching the surface of
something new and interesting.” It gets really interesting when social
networking info crosses site boundaries and anyone can crawl it. Game on!

 Technical Book (tie): Real-World XML and Hacking the Xbox

Paul Barry called Andrew “bunnie” Huang's Hacking the Xbox “a darned good
read” in our January 2004 issue. The book is a matter-of-fact introduction to
current issues in making hardware do what you want and not what fits into
some company's business model.

Reuven writes that Real-World XML by Steven Holzner is “another big, thick
book about XML, which doesn't really need big, thick books. But it offers some
good explanations, sample code and discusses applications, including SOAP.”

If you're into well formed documents, get Huang's book; if you're into well
formed solder joints, get Holzner's. Expand your mind.

 Nontechnical Book: Free Culture

Did some of the members of Beatallica want to be a Beatles tribute band, while
others wanted to be a Metallica tribute band? We can't go see them perform
“Got to Get You Trapped Under Ice” and “Everybody's Got a Ticket to Ride
Except for Me and My Lightning”, because Beatallica is in hiding for fear of
record company lawyers.

It wasn't always like this. Back when Walt Disney directed Steamboat Willy, a
parody of Buster Keaton's Steamboat Bill, Jr., copyright law was different and
encouraged creativity, not lawyer bills. Professor Lawrence Lessig, in Free
Culture, explains copyright in a way that will help you, the Linux and Internet
native, explain today's copyright issues to people who are new to the whole
sorry scene. Lessig represents the often-ignored middle ground in the
copyright debate.

 Technical Web Site: LWN

LWN wins again. We can say the same thing about this site that we said last
year: a great mix of links to the best Linux stories from other sites, including
Linux Journal's, plus original technical content. A recent series profiles the
various free software choices in calendars, image viewers and drawing
programs.

 Nontechnical or Community Web Site: Groklaw

If you sold your TV when L.A. Law went off the air, this is the site for you. Get
sucked in to the courtroom drama surrounding failing UNIX vendor The SCO
Group, formerly Caldera, and the company's long-shot lawsuits against
AutoZone, Daimler-Chrysler, IBM and Novell. Will SCO dodge a lawsuit from Red
Hat? Did Novell transfer UNIX copyrights to SCO? Will Grace get back together
with Victor? Greg says Groklaw is “now the home page for more IBM executives
than any other site.”

 Mailing List or Other Support Forum: linux-kernel List

Greg weighs in to support the linux-kernel mailing list: “It's high volume,
oftentimes rude, but always informative and never boring. And if a user is
willing to be nice, quite helpful”, he says. So be nice. Or else.

 Project of the Year: Ardour

The digital audio workstation Ardour was the centerpiece of the Linux-based
recording studio in Aaron Trumm's article in the May 2004 issue. In his column
for the Linux Journal Web site, Dave Phillips wrote, “Ardour has become a
center of attention for those of us who wish to use Linux in a professional
audio setting”, and “That Ardour has come so far and evolved so well is a
testament to the talents and dedication of its programming crew.”
Congratulations to Paul Davis and the rest of the Ardour team.

 Product of the Year: EmperorLinux Toucan

Remember that IBM ThinkPad T41, the laptop everyone likes? Doc bought his
through EmperorLinux, a company full of friendly people who set up major-
brand laptops with your distribution of choice, with a patched and tested kernel
that supports the laptop hardware. Emperor sells its Linux-enabled T41 as the
“Toucan”, and it will set up the system with any of six different distributions or
dual-boot with a Microsoft OS. Best of all, EmperorLinux is quick to reply to
support calls on Linux issues and the original manufacturer's warranty remains
in effect for the hardware.

Now that the T41 is a hit on the Linux scene, will IBM sell EmperorLinux an OS-
less version so Linux customers don't have to pay for a legacy OS license?
Maybe if they knock off reading Groklaw for a few minutes and do the deal,
we'll get lucky next year.

Resources for this article: /article/7613.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7613.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Linux Serial Consoles for Servers and Clusters

Matthew E. Hoskins

Issue #124, August 2004

The more Linux servers you're responsible for, the more that serial consoles
can save you money, space and headaches by easing remote administration
duties.

Managing large numbers of Linux and UNIX systems takes a lot of organization,
automation and careful use of technology. A significant chunk of one's time as
a system administrator is spent building infrastructure to make managing
those systems easier. Doing so improves flexibility, recoverability and reduces
downtime. All of this hopefully results in less stress and longer vacations. This
article discusses one of those simple technologies that helps accomplish all of
the above, serial consoles.

Figure 1. Managing Many Servers from a Console Server

Serial consoles always have been a standard feature of enterprise UNIX
hardware. Modern high-density server and cluster configurations sometimes
can squeeze more than 50 servers in a 19" rack, so having monitors and
keyboards for each one is unthinkable. Although KVM (keyboard/video/mouse)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/124/7206f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7206f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7206f1.large.jpg

switches can connect many servers to a small number of monitors and
keyboards, they are expensive and even more so with remote access features.
Serial consoles allow you to take racks or shelves of servers and have all their
consoles available all the time, from anywhere.

 Consoles Defined

The console is a simple I/O device, initialized early in the kernel boot process to
convey informational messages as the system comes up. Once the operating
system starts running startup scripts, the console can be used to recover an
ailing system or to get input from the system administrator interactively, like
Red Hat's Kudzu does. One compelling feature of serial consoles is never
having to drive in to work because a system is hung up at reboot asking for
input for fsck. After the system is up completely, the console usually becomes a
login terminal, sometimes a graphical one. The console also can be used as a
last resort method of reporting problems inside the kernel. Under these panic
conditions it is not possible always to write to log files or network log servers,
so messages are reported to the console. For this reason and many more,
consoles on servers should be a simple device, and a serial port is the simplest
device included on standard system configurations. For those last-minute panic
messages, one could add a console device that supports buffering and logging,
so you never miss a moment of the excitement.

 Hardware Support

What we are talking about here is booting up a system without using an
attached keyboard, mouse or video monitor. Some motherboards may
complain without a directly attached keyboard, but this requirement usually
can be changed in the BIOS configuration. In fact, with the recent popularity of
USB keyboards, most BIOS versions do not care about missing keyboards. If
you are using a system that was designed to be a server, you may be even
more fortunate. Several vendors have started adding extra functionality to their
BIOS versions to better support serial consoles from power-on. These features
sometimes include power-on system test (POST) output and BIOS configuration
access over the serial port. Depending on your needs, you can select your
hardware accordingly by checking the vendor specifications. Even without BIOS
support, you still can use serial consoles quite effectively on almost any PC
system.

This is not a perfect solution, though, and your average PC hardware does not
provide all of the features available in typical enterprise-class UNIX hardware.
PC BIOS versions do not have the concept of a boot monitor (see the “What Is a
Boot Monitor?” sidebar), nor can you perform a hardware halt of the OS as you
can in enterprise UNIX hardware. For many applications this is okay, but when

more functionality is needed add-on hardware options are available, and I
discuss them later.

What Is a Boot Monitor?

Classic UNIX hardware (Sun, HP, SGI and so on) usually has a feature called a
boot monitor. Think of it as a tiny operating system built into Flash memory on
the motherboard of a server or workstation. Sometimes called a boot console
or prom console, they function as a PC BIOS and a bootloader in one. They are
responsible for understanding all manner of boot devices and getting the
kernel image into RAM and running. Most boot monitors can boot from the
network for diskless operation or recovery from a failed boot device. One key
feature of boot monitors is they stand between the console and the kernel, so it
often is possible to suspend or halt the running OS and drop to the boot
monitor with a magic keystroke. Then, even better, the OS resumes where it left
off. This allows you to diagnose hardware problems or forcibly reboot the
system even if the kernel has died. In a PC system, only a skeletal set of
hardware support exists in the BIOS, and the rest must be provided by small
chunks of code provided in Flash memory on the hardware itself.

Most PC hardware BIOS versions can be configured only with a directly
attached keyboard and video monitor. Luckily most come with usable default
settings, so this is not normally an issue. If it is, you may need to have the
system initially configured with direct attached video and keyboard and then
switch to serial console. In my experience, I have rarely needed to do this; it
needs to be done only once during initial hardware setup.

 Software Configuration Overview

As packaged by most distributions, the Linux kernel and bootloader select the
directly attached video controller and keyboard as console, but this is easily
changed. When a PC-based system boots, the bootloader is the first program to
be loaded off the disk. The three major bootloaders in popular use on Linux
systems are GRUB, LILO and SYSLINUX (used on boot floppies); all of them
support serial consoles. Next, the Linux kernel needs to be told to use a serial
port for its console, which can be handled at compile time or by passing kernel
command-line options from the bootloader configuration. Finally, if you want to
be able to log in on the console, you need to configure a getty process to run
after the system is up.

 Kernel Configuration

We discuss the kernel configuration next because it is a prerequisite to
understanding the bootloader config later on. The most flexible way to
configure the kernel console is with the options passed on the kernel command

line. You can append arguments to the command line from the bootloader.
Here is an example of the kernel command-line syntax:

console=ttyS0,9600n8

This tells the kernel to use ttyS0 (the first serial port discovered by the kernel),
running at 9,600 baud, no parity and 8 bits. The kernel defaults to one stop bit.
This is the most common speed and configuration for a serial console, which is
why most serial ports and terminals default to 9600n8. It is possible to append
more than one console= argument to the command line; kernel messages
then are output to all of them, but only the last one is used for input.

 Bootloader Configuration: GRUB

GRUB is a flexible bootloader with excellent support for serial consoles. When
properly configured, GRUB allows multiple devices to be used as a console.
Listing 1 shows an example grub.conf file (usually /boot/grub/grub.conf and
symlinked to /etc/grub.conf) as configured by the Red Hat/Fedora Core
installer. Yours may be slightly different.

Listing 1. An Ordinary grub.conf File

grub.conf generated by anaconda
#
Note that you do not have to rerun grub
after making changes to this file
NOTICE:You have a /boot partition.
This means that all kernel
and initrd paths are relative
to /boot/, eg.
root (hd0,1)
kernel /vmlinuz-version ro root=/dev/hda6
initrd /initrd-version.img
#boot=/dev/hda
default=0
timeout=10
splashimage=(hd0,1)/grub/splash.xpm.gz
title Red Hat Linux (2.4.20-8)
 root (hd0,1)
 kernel /vmlinuz-2.4.20-8 ro root=LABEL=/
 initrd /initrd-2.4.20-8.img

The first thing to do is remove all splashimage directives. In some early
versions, these directives confuse GRUB and make it default to the video
console. Then add a serial and terminal line. The serial line initializes the serial
port to the proper baud and settings. In the terminal line, we configure GRUB to
send prompts to both the serial port and to the keyboard and monitor. You can
press any key on either, and it becomes the default console. The --
timeout=10 argument tells GRUB to default to the first device listed in the
terminal line after ten seconds. We also modified the kernel command line to
include the option that tells the Linux kernel to use the serial port as console.
Listing 2 shows the complete modified grub.conf file.

Listing 2. A grub.conf File That Supports Serial Console

#boot=/dev/hda

Options added for serial console
serial --unit=0 --speed=9600 \
 --word=8 --parity=no --stop=1
terminal --timeout=10 serial console

default=0
timeout=10
title Red Hat Linux (2.4.20-8)
 root (hd0,1)
 kernel /vmlinuz-2.4.20-8 ro \
 root=LABEL=/ console=ttyS0,9600n8
 initrd /initrd-2.4.20-8.img

 Bootloader Configuration: LILO

The LILO bootloader, although much more mature than GRUB, is less feature-
rich. We must configure LILO and pass options to the kernel to use a serial port.
To do this, we add:

serial=<port>,<bps><parity><bits>

where port 0 is the first serial port detected by LILO. Also, the append= line is
modified to include the kernel options. After modifying the /etc/lilo.conf file, be
sure to run LILO to update the bootloader. The completed lilo.conf file is shown
in Listing 3.

Listing 3. lilo.conf with Serial Console Support

serial=0,9600n8
boot=/dev/hda
map=/boot/map
install=/boot/boot.b
prompt
timeout=50
message=/boot/message
linear
default=Linux

image=/boot/vmlinuz-2.4.20-8
 label=2.4.20-8
 read-only
 initrd=/boot/initrd-2.4.20-8.img
 append="root=LABEL=/ console=ttyS0,9600n8"

 Bootloader Configuration: SYSLINUX

SYSLINUX is a bootloader designed for use with DOS/FAT formatted bootable
floppies. Red Hat/Fedora Core Linux uses SYSLINUX for both the install boot
and rescue floppies. In order to install or recover from boot floppies over serial
console, the floppies need to be modified. We have added the console= and
text directive to the append line, and we have removed the extra boot

selections present in Red Hat's original file. The first line initializes and directs
SYSLINUX to use serial port 0 (aka /dev/ttyS0) and defaults to 9600n8. Using this
modified boot floppy, we can install the OS over the serial console. Red Hat's
text installation option works quite nicely this way. Using the above
modifications, you can convert any SYSLINUX boot floppy to use serial consoles.
This procedure also works for ISOLINUX, which is a spinoff of SYSLINUX used on
bootable CD-ROMs.

Listing 4. syslinux.cfg File Configured for Serial Console

serial 0
default Linux
prompt 1
timeout 100
label Linux
 kernel vmlinuz
 append initrd=initrd.img lang= text \
 devfs=nomount ramdisk_size=8192 \
 console=ttyS0,9600n8

 Enabling Logins and Tuning

As stated before, the console can become a login terminal after the system is
up. For this to happen, the getty entries in /etc/inittab must be modified. The
standard /etc/inittab starts mingetty on virtual consoles only. Because mingetty
is not suitable for serial terminals, we must use something else. Many getty-
type programs are available, but agetty is included with almost every Linux
distribution, so we use it. Also, make sure the system boots to nongraphical
mode, normally runlevel 3. Some Linux distributions default to an X login,
usually at runlevel 5, if any X packages were installed. The default runlevel is
determined on the initdefault line. To enable agetty on serial lines, you can
modify the initdefault line in /etc/inittab:

id:3:initdefault:

and add a line for agetty:

co:2345:respawn:/sbin/agetty ttyS0 9600 vt100

This tells agetty to start waiting for logins on /dev/ttyS0 at 9,600bps, using vt100
terminal emulation. You may want to keep the original mingetty entries to allow
a directly attached keyboard and monitor to be used for logins. If not, simply
comment them out. Where root can log in from is controlled strictly; in order
for root to log in from ttyS0, you must add the device to the /etc/securetty file.

Finally, if your system has created a /etc/ioctl.save file, delete or rename it. This
file is used to save console settings between reboots. If the system was booted

using a directly attached keyboard and monitor, this file attempts to restore
improper settings. A new one is created when you reboot using the serial
console.

 Tweaking for Red Hat/Fedora Core

Red Hat's bootup scripts use escape sequences, so the OK, PASS and FAIL
messages show up in color. This can confuse serial consoles, so it is best to
disable it. Simply modify /etc/sysconfig/init, and change the BOOTUP= line to
say BOOTUP=serial. This will prevent the use of color messages.

 Cabling

Serial cabling can cause some confusion. Basically, there are two kinds of serial
ports, DCE (Data Communication Equipment) and DTE (Data Terminal
Equipment). The ports differ in how specific signals are connected to pins on
the connector. Data communication with serial ports uses separate transmit
and receive wires, so when connecting two pieces of equipment together, one
must make sure the transmit wire on one side connects to the receive wire on
the other side. As long as you are connecting a DCE device to a DTE device you
can use a regular straight-through cable, where each pin is connected to the
same pin on the other side of the cable. If you are connecting devices of the
same type, however, you must use a special cable or adapter, called a null
modem, so the signals are swapped properly. DTE devices usually are
terminals, computers and printers. DCE devices are designed to connect
directly to computers, such as modems and serial mice.

In addition to the data transmit and receive wires, a number of handshaking
signals are used to control the flow of data, so one side is not talking too fast
for the other to understand. These signals also must be swapped by the null
modem. To add to the confusion, two popular connectors are in use for serial
ports, the 9-pin DB9 and the 25-pin DB25. These can come in both male and
female varieties. In almost every case, the devices used for serial consoles
(terminals, computers and console servers) are all DTE, which means you need
a null modem of some sort. These are available in the form of adapters and
cables. Most off-the-shelf units work fine, but if you want to solder your own,
check the on-line Resources section for links to pinouts and cable diagrams.

 Putting It All Together

At this point, we have described a Linux system that can boot up without a
directly attached keyboard and monitor. It uses the first serial port for all
informational messages as the system boots and accepts logins from that
console once the system is up. But to what should you connect that console
port? There is a world of possibilities. If you have no particular need for remote-

console access, you simply can leave the port unconnected until you need to
maintain the system. You can use a computer or laptop connected over a null
modem with the minicom program to access your system's console. Simply
configure minicom to speak to an unused serial port, set the speed to 9,600
baud, 8 bits, no parity and 1-stop bit (aka 9600-8n1). Cable the systems
together, then watch the system boot and eventually ask you to log in.

For remote access to a server's console, you can set up a console concentrator,
which is a lot like a terminal server. It can be a homegrown Linux box with
multiport serial cards, giving you as many ports as you have servers. With this
kind of setup, you can access all your servers' consoles by logging in to a single
dedicated Linux box.

 Specialized Hardware

If you like the idea of remote access to your consoles but want more of an
appliance, a number of products can help. Cyclades (www.cyclades.com) makes
a console concentrator called AlterPath; it is reasonably priced and comes in 1,
4, 8, 16, 32 and 48-port models. The AlterPath units run Linux internally from
Flash memory. A Web interface is used for configuration, or you can modify the
configuration files directly through a shell login.

The most flexible way to configure the Cyclades unit is to present the consoles
using Cyclades' modified SSH dæmon. This way you can SSH directly to each
connected server's console port, which is identified by a textual name you
choose. So, to connect to a server identified as server hooked to a Cyclades unit
with a hostname of cyclades as the user matt, the command would look like:
ssh matt:server@cyclades. (The colon syntax is a Cyclades modification
to sshd, allowing you to pass a port name.) This setup is easy to use, and you
even can set up SSH private key authentication.

Other vendors make console concentrators or servers, including Digi
(www.digi.com), Equinox (www.equinox.com) and Raritan (www.raritan.com).
All of these vendors offer network-attached serial console products.

As mentioned earlier, serial consoles on standard PC hardware lack some of
the features available on enterprise UNIX hardware. One solution is PC Weasel
(www.realweasel.com), which comes in the form of a PCI or ISA card. This
device emulates a video card and translates all output to the serial port as
normal terminal escape sequences. Input from the serial port is translated into
PC keyboard scan codes. Because it looks like a video card to the system, the
system allows it full access to BIOS and POST. Additional features allow you to
do a remote hard reset. The PC Weasel also has its own processor, so it is
available even if the host into which it is plugged crashes.

http://www.cyclades.com
http://www.digi.com
http://www.equinox.com
http://www.raritan.com
http://www.realweasel.com

 Specialized Software

If you would like to build your own console concentrator, some options are
available to make it a little better than a simple box with a lot of serial ports.
Conserver (www.conserver.com) is an open-source software package for
managing systems connected to serial consoles. It supports SSL encryption and
is highly configurable.

Resources for this article: /article/7507.

Matthew E. Hoskins is a Linux/UNIX system administrator for The New Jersey
Institute of Technology, where he maintains many of the corporate
administrative systems. He enjoys trying to get wildly different systems and
software working together, usually with a thin layer of Perl (also known as
MattGlue). He can be reached at matt@njit.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.conserver.com
https://secure2.linuxjournal.com/ljarchive/LJ/124/7507.html
mailto:matt@njit.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Distributed Caching with Memcached

Brad Fitzpatrick

Issue #124, August 2004

Cut the load on your Web site's database by adding a scalable object caching
layer to your application.

Memcached is a high-performance, distributed caching system. Although
application-neutral, it's most commonly used to speed up dynamic Web
applications by alleviating database load. Memcached is used on LiveJournal,
Slashdot, Wikipedia and other high-traffic sites.

 Motivation

For the past eight years I've been creating large, interactive, database-backed
Web sites spanning multiple servers. Approximately 70 machines currently run
LiveJournal.com, a blogging and social networking system with 2.5 million
accounts. In addition to the typical blogging and friend/interest/profile
declaration features, LiveJournal also sports forums, polls, a per-user news
aggregator, audio posts by phone and other features useful for bringing people
together.

Optimizing the speed of dynamic Web sites is always a challenge, and
LiveJournal is no different. The task is made all the more challenging, because
nearly any content item in the system can have an associated security level and
be aggregated into many different views. From prior projects with dynamic,
context-aware content, I knew from the beginning of LiveJournal's development
that pregenerating static pages wasn't a viable optimization technique. It's
impossible due to the constituent objects' cacheability and lifetimes being so
different, so you make a bunch of sacrifices and waste a lot of time
precomputing pages more often than they're requested.

This isn't to say caching is a bad thing. On the contrary, one of the core factors
of a computer's performance is the speed, size and depth of its memory
hierarchy. Caching definitely is necessary, but only if you do it on the right

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

medium and at the right granularity. I find it best to cache each object on a
page separately, rather than caching the entire page as a whole. That way you
don't end up wasting space by redundantly caching objects and template
elements that appear on more than one page.

In the end, though, it's all a series of trade-offs. Because processors keep
getting faster, I find it preferable to burn CPU cycles rather than wait for disks.
Modern disks keeping growing larger and cheaper, but they aren't getting much
faster. Considering how slow and crash-prone they are, I try to avoid disks as
much as possible. LiveJournal's Web nodes are all diskless, Netbooting off a
common yet redundant NFS root image. Not only is this cheaper, but it requires
significantly less maintenance.

Of course, disks are necessary for our database servers, but there we stick to
fast disks with fast RAID setups. We actually have ten different database
clusters, each with two or more machines. Nine of the clusters are user
clusters, containing data specific to the users partitioned among them. One is
our global cluster with non-user data and the table that maps users to their
user clusters. The rationale for independent clusters is to spread writes. The
alternative is having one big cluster with hundreds of slaves. The difficulty with
such a monolithic cluster is it only spreads reads. The problem of diminishing
returns appears as each new slave is added and increasingly is consumed by
the writes necessary to stay up to date.

At this point you can see LiveJournal's back-end philosophy:

1. Avoid disks: they're a pain. When necessary, use only fast, redundant I/O
systems.

2. Scale out, not up: many little machines, not big machines.

My definition of a little machine is more about re-usability than cost. I want a
machine I can keep using as long as it's worth its space and heat output. I don't
want to scale by throwing out machines every six months, replacing them with
bigger machines.

 Where to Cache?

Prior to Memcached, our Web nodes unconditionally hit our databases. This
worked, but it wasn't as optimal as it could've been. I realized that even with 4G
or 8G of memory, our database server caches were limited, both in raw
memory size and by the address space available to our database server
processes running on 32-bit machines. Yes, I could've replaced all our
databases with 64-bit machines with much more memory, but recall that I'm
stubborn and frugal.

I wanted to cache more on our Web nodes. Unfortunately, because we're using
mod_perl 1.x, caching is a pain. Each process and thus, each Web request, is in
its own address space and can't share data with the others. Each of the 30–50
processes could cache on its own, but doing so would be wasteful.

System V shared memory has too many weird limitations and isn't portable. It
also works only on a single machine, not across 40+ Web nodes. These issues
reflect what I saw as the main problem with most caching solutions. Even if our
application platform was multithreaded with data easily shared between
processes, we still could cache on only a single machine. I didn't want all 40+
machines caching independently and duplicating information.

 Memcached Is Born

One day, sick of how painful it is to cache efficiently in mod_perl applications, I
started dreaming. I realized we had a lot of spare memory available around the
network, and I wanted to use it somehow. If you're a Perl programmer strolling
through CPAN, you find an abundance of Cache::* modules. The interface to
almost all of them is a dictionary. If you're fortunate enough to have missed
Computer Science 101, a dictionary is the name of the abstract data type that
maps keys to values. Perl people call that an associative array or a hash, short
for hash table. A hash table is a specific type of data structure that provides a
dictionary interface.

I wanted a global hash table that all Web processes on all machines could
access simultaneously, instantly seeing one another's changes. I'd use that for
my cache. And because memory is cheap, networks are fast and I don't trust
servers to stay alive, I wanted it spread out over all our machines. I did a quick
search, found nothing and started building it.

Each Memcached server instance listens on a user-defined IP and port. The
basic idea is you run Memcached instances all over your network, wherever you
have free memory and your application uses them all. It's even useful to run
multiple instances on the same machine, if that machine is 32-bit and has more
total memory than the kernel makes available to a single process. For example,
while we were learning our lesson on scaling out and not up, we picked up a
ridiculously expensive machine that happens to have 12GB of memory.
Nowadays, we use it for a number of miscellaneous tasks, one of which is
running five 2GB Memcached instances. That gives us 10GB more memory in
our global cache from a single machine, even though each process on 32-bit
Linux usually can address only 3GB of memory.

The trick to Memcached is that for a given key, it needs to pick the same
Memcached node consistently to handle that key, all while spreading out
storage (keys) evenly across all nodes. It wouldn't work to store the key foo on

machine 1 and then later have another process try to load foo from machine 2.
Fortunately, this isn't a hard problem to solve. We simply can think of all the
Memcached nodes on the network as buckets in a hash table.

 How Memcached Works

Figure 1. The Memcached client library is responsible for sending requests to the correct
servers.

Step 1: the application requests keys foo, bar and baz using the client library,
which calculates key hash values, determining which Memcached server should
receive requests.

Step 2: the Memcached client sends parallel requests to all relevant
Memcached servers.

Step 3: the Memcached servers send responses to the client library.

Step 4: the Memcached client library aggregates responses for the application.

If you know how a hash table works, skim along. If you're new to hashes, here's
a quick overview. A hash table is implemented as an array of buckets. Each
bucket (array element) contains a list of nodes, with each node containing [key,
value]. This list later is searched to find the node containing the right key. Most
hashes start small and dynamically resize over time as the lists of the buckets
get too long.

A request to get/set a key with a value requires that the key be run through a
hash function. A hash function is a one-way function mapping a key (be it
numeric or string) to some number that is going to be the bucket number.
Once the bucket number has been calculated, the list of nodes for that bucket
is searched, looking for the node with the given key. If it's not found, a new one
can be added to the list.

So how does this relate to Memcached? Memcached presents to the user a
dictionary interface (key -> value), but it's implemented internally as a two-layer
hash. The first layer is implemented in the client library; it decides which
Memcached server to send the request to by hashing the key onto a list of
virtual buckets, each one representing a Memcached server. Once there, the
selected Memcached server uses a typical hash table.

Each Memcached instance is totally independent, and does not communicate
with the others. Each instance drops items used least recently by default to
make room for new items. The server provides many statistics you can use to
find query/hit/miss rates for your entire Memcached farm. If a server fails, the
clients can be configured to route around the dead machine or machines and
use the remaining active servers. This behavior is optional, because the
application must be prepared to deal with receiving possibly stale information
from a flapping node. When off, requests for keys on a dead server simply
result in a cache miss to the application. With a sufficiently large Memcached
farm on enough unique hosts, a dead machine shouldn't have much impact on
global hit rates.

 Our Setup

LiveJournal.com currently has 28 Memcached instances running on our
network on ten unique hosts, caching the most popular 30GB of data. Our hit
rate is around 92%, which means we're hitting our databases a lot less often
than before.

On our Web nodes with 4GB of memory, we run three Memcached instances of
1GB each, then mod_perl using 500MB, leaving 500MB of breathing room.
Running Memcached on the same machine as mod_perl works well, because
our mod_perl code is CPU-heavy, whereas Memcached hardly touches the CPU.
Certainly, we could buy machines dedicated to Memcached, but we find it more
economical to throw up Memcached instances wherever we happen to have
extra memory and buy extra memory for any old machine that can take it.

You even can run a Memcached farm with all instances being different sizes.
We run a mix of 512MB, 1GB and 2GB instances. You can specify the instances
and their sizes in the client configuration, and the Memcached connection
object weights appropriately.

 Speed

Of course, the primary motivation for caching is speed, so Memcached is
designed to be as fast as possible. The initial prototype of Memcached was
written in Perl. Although I love Perl, the prototype was laughably slow and
bloated. Perl trades off memory usage for everything, so a lot of precious
memory was wasted, and Perl can't handle tons of network connections at
once.

The current version is written in C as a single-process, single-threaded,
asynchronous I/O, event-based dæmon. For portability and speed, we use
libevent (see the on-line Resources section) for event notification. The
advantage of libevent is that it picks the best available strategy for dealing with
file descriptors at runtime. For example, it chooses kqueue on BSD and epoll on
Linux 2.6, which are efficient when dealing with thousands of concurrent
connections. On other systems, libevent falls back to the traditional poll and
select methods.

Inside Memcached, all algorithms are O(1). That is, the runtime of the
algorithms and CPU used never varies with the number of concurrent clients, at
least when using kqueue or epoll, or with the size of the data or any other
factor.

Of note, Memcached uses a slab allocator for memory allocation. Early versions
of Memcached used the malloc from glibc and ended up falling on their faces
after about a week, eating up a lot of CPU space due to address space
fragmentation. A slab allocator allocates only large chunks of memory, slicing
them up into little chunks for particular classes of items, then maintaining
freelists for each class whenever an object is freed. See the Bonwick paper in
Resources for more details. Memcached currently generates slab classes for all
power-of-two sizes from 64 bytes to 1MB, and it allocates an object of the
smallest size that can hold a submitted item. As a result of using a slab
allocator, we can guarantee performance over any length of time. Indeed, we've
had production Memcached servers up for 4–5 months at a time, averaging
7,000 queries/second, without problems and maintaining consistently low CPU
usage.

Another key requirement for Memcached was that it be lockless. All objects are
multiversioned internally and reference counted, so no client can block any
other client's actions. If one client is updating an object stored in Memcached
while a dozen others are downloading it, even with one client on a lossy
network connection dropping half its packets, nobody has to wait for anybody
else.

A final optimization worth noting is that the protocol allows fetching multiple
keys at once. This is useful if your application knows it needs to load a few
hundred keys. Instead of retrieving them all sequentially, which would take a
fraction of a second in network round-trips, the application can fetch them all in
one request. When necessary, the client libraries automatically split multi-key
loads from the application into separate parallel multi-key loads to the
Memcached instances. Alternatively, applications can provide explicit hash
values with keys to keep groups of data on the same instance. That also saves
the client library a bit of CPU time by not needing to calculate hash values.

 Client Libraries

The client/server interface to Memcached is simple and lightweight. As such,
there are client libraries for Perl, PHP, Python and Java. I also hear that a
coworker of mine has been working on a Ruby client, due out soon.

All of the clients support object serialization using their native serialization
methods. Perl uses Storable, PHP uses serialize, Python uses Pickle and Java
uses the Serializable interface. Most clients also support transparent
compression, optionally only past a certain size threshold. Both serialization
and compression are possible because Memcached lets client modules store
opaque flags alongside stored items, indicating how they should handle the
data coming out.

 Using Memcached

Installing Memcached alone is no panacea; you have to do some work to use it.
Profile your application and database queries to see where you're killing the
most time and then cache from there. You also have to handle updating and
purging your cache, because immediate cache coherency is important for most
applications. If your application's internal API is already pretty clean, and you
don't haphazardly hit the database all over your code, adding Memcached
support should be easy. In your getter functions, simply try Memcached first.
On a miss, hit the database and then populate Memcached. In your setter
functions, update both the database and Memcached. You may find race
conditions and cache coherency problems to deal with, but the Memcached API
provides means to deal with them.

Memcached also is useful for storing data you don't really need to put on disk.
For example, LiveJournal uses it to prevent accidental duplicate submissions of
requests by storing the transaction's result code in Memcached, keyed by a
transaction signature. Another example of Memcached as a primary data store,
as opposed to a cache, is warding off dumb and/or malicious bots, often
spammers. By keeping track of the last times and actions of each IP address
and session, our code automatically can detect patterns and notify us of attacks

early on, taking automatic action as necessary. Storing this information in the
database would've been wasteful, burdening the disks unnecessarily. Putting it
in memory is fine, however, because the data is safe to lose if a Memcached
node fails.

I asked the mailing list what interesting things they're using Memcached for,
and here's what they said:

• Many people use it like we do on LiveJournal, as a typical cache for small
Web objects.

• One site is using it to pass the currently playing song from their Java
streaming server to their PHP Web site. They used to use a database for
this, but they report hitting Memcached is much nicer.

• A lot of people are caching authentication info and session keys.
• One person reported speeding up mail servers by caching known good

and known bad hosts and authentication details.

I continue to receive interesting e-mails and suggestions, so I'm happy that
people are finding good uses for it.

 Alternatives

If you can get away with running your threaded application on a single machine
and have no use for a global cache, you probably don't need Memcached.
Likewise, SysV shared memory may work for you, if you're sitting on a single
machine.

A few people have suggested that MySQL 4.x's query cache might negate the
need for Memcached. The MySQL query cache is emptied every time a relevant
table is updated in any way. It's mostly a feature useful for read-only sites.
LiveJournal is incredibly write-heavy, as are most high-traffic sites nowadays.
Also, as with other databases, the MySQL caches together can't exceed the
maximum address space the kernel provides, usually 3GB on a 32-bit machine,
which gets to be cramped.

Another option for some people is MySQL's in-memory table handler. It wasn't
attractive for my uses because it's limited to fixed-length records, not allowing
BLOB or TEXT columns. The total amount of data you can store in it also is
limited, so we still would've needed to run a bunch of them and fan out keys
amongst them.

 Acknowledgements

I'd like to thank Anatoly Vorobey for all of his hard work on the Memcached
server, Lisa Phillips for putting up with early crash-prone versions and all the
users on the mailing list who have sent in patches, questions and suggestions.

Resources for this article: /article/7559.

Brad Fitzpatrick has been hacking database-driven Web sites for eight years. In
addition to riding his bike, Brad enjoys trying to think up alternative solutions to
problems that otherwise might involve salespeople. Unless you're pitching blue
pills or informing him of dead servers, Brad welcomes your mail at
brad@danga.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7559.html
mailto:brad@danga.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Data Acquisition with Comedi

Caleb Tennis

Issue #124, August 2004

One standard platform provides a uniform API for many data acquisition
boards. You even can try it out with the standard PC parallel port.

Most scientists and engineers love data. The more data you can feed them, the
more they smile. In a laboratory setting, data means everything. In order to
spot trends, analyze strange phenomena and draw final conclusions, a lab
person needs to make sure they have acquired a complete set of data.

The concept of data acquisition therefore encompasses a broad scope of ideas.
Most scientists and engineers, however, agree that data acquisition is the result
of the measurement of some natural process. This could be as simple as the
measurement of a temperature, for example, or as complex as the
measurement of impurities in molten steel.

In the computing world, data acquisition most commonly is done by measuring
a voltage. To do so, it is necessary to have some sensor or measurement device
that is capable of producing a voltage that the computer can measure. It's also
important to know the correlation between the measured parameter and the
sensor's voltage output. Ideally, the correlation is linear, as in a temperature
sensor where 1 measured degree Celsius corresponds to .1 volts.

Modern motherboards have onboard sensors, such as National
Semiconductor's LM78, which assess the overall health of the system. These
sensors measure such conditions as cooling fan speeds, processor core
voltages and temperatures and hard drive rotation speeds. This information is
acquired by the chip and can be reported to the processor through a serial bus.
The open-source project lm_sensors (secure.netroedge.com/~lm78) provides
the software for monitoring many aspects of motherboards.

Typical personal computers have no common interface for analog data
acquisition, however. In order to make some external voltage measurement, a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://secure.netroedge.com/~lm78

new interface is necessary. Data acquisition (DAQ) cards designed for either the
PCI or ISA bus fill this gap. Many manufacturers make cards well suited for
taking external measurements.

Table 1. Common Data Acquisition Channel Types

 The Comedi Project

Most Linux users have experienced firsthand the complications surrounding
having a single type of system (a printer, for example) and multiple models,
makes, vendors and drivers. Any attempt at standardization becomes a large
project. If the project receives enough support, it becomes the standard. Some
vendors, like National Instruments, have released Linux drivers for their DAQ
products, while others have not.

Comedi, or Control and Measurement Device Interface, is the standard suite of
data acquisition drivers and libraries for Linux. Started in 1996 by David Schleef,
Comedi attempts to support multiple vendors and models of cards through a
common interface. In fact, the overall API design is a balance between
modularity and complexity. Like other Linux driver projects, some of the work is
the result of a lot of reading of hardware manuals, some is the result of reverse
engineering and some is the result of manufacturers' assistance in providing
Comedi support for their products.

 How It Works

Comedi is separated into two parts. Comedi itself is the package of drivers that
are loaded into kernel space, and comedilib gives user-space access to those
drivers. It is through comedilib that the transparency of Comedi shines.
Programs using Comedi can be written in C or C++. Perl and Python bindings
also exist for Comedi.

Name Description

Analog Inputs Measure external signals, such as a voltage

Analog Outputs Send a variable signal

Digital Inputs/
Outputs

A discrete on/off signal; commonly 0 for off, 5 volts
for on

Counters Can count a number of pulses or measure frequency

Timers
Can measure the amount of time elapsed between

two digital pulses

Comedi breaks things down into channels, subdevices and devices. A channel is
the lowest level of measurement or control. Multiple channels of the same type
are grouped into a common set, called a subdevice. Then multiple subdevices
are grouped together into a complete device. When using Comedi, first a
Comedi driver is loaded into memory. Then, /usr/sbin/comedi_config is
run to bind the driver to a Comedi device, such as /dev/comedi0. Finally,
functions are available in comedilib to access the various devices on the DAQ
card.

 A Lab Example

One example of an application for DAQ and Comedi is the Analytical
Engineering, Inc. (AEI) airflow laboratory. In the AEI lab, airflow is generated by a
fan and is forced through orifices of varying sizes. Using a custom-written
software application, a technician can monitor the pressure buildup across the
orifice. In turn, this pressure buildup can be used to calculate the approximate
amount of air flowing across the orifice. This calculation is vital, because it
allows a technician to determine whether various meter calibrations are
correct.

However, the actual mass flow is more difficult to calculate completely. This
number requires knowledge of two air pressures, three airflow temperatures,
humidity, barometric pressure and altitude.

Off-the-shelf components exist for converting these measurements to voltage;
one of the most popular interfaces is 5B. Using 5B modular blocks, it's possible
to transform all of these measurements to voltages the DAQ card can read.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f1.large.jpg

Figure 1. Airflow Measurement Device

Using Comedi, reading these voltages becomes as trivial as using the
comedi_data_read function. Calling this function and specifying a certain
channel produces a resultant value, 3,421 for instance. But what does this
number mean?

DAQ cards measure with a certain bit precision, 12 bits being the most
common. They also specify a range or ranges of voltages over which they can
be programmed to measure. Because a 12-bit number is represented from 0 to
4,095, it's easy to see that 3,421 is simply 3,421/4,095 * 100% of full scale
(4,095). If the range of voltages is specified as [0, 5], then 3,421 would represent
4.177 volts.

Utilizing this information and knowing that the 5B block for temperature maps
as [0 volts – 5 volts] → [0°C – 100°C], a small amount of programmatic math
delivers a temperature of 83.56°C. Couple all of these measurements together,
add a nice GUI interface and repeat the DAQ process every second.

More complex data acquisition can be performed as well. When acquiring data,
it's important to make sure you sample fast enough so as not to miss any
important information that occurs between samples. To support this, Comedi
offers a command interface that can be used to set up synchronized sampling.
Based on the sophistication of the DAQ card, timing can be handled by
software interrupts or on-card interrupts.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f1.large.jpg

Listing 1. Sample Program for Acquiring Voltage from One Channel

#include <stdio.h>
#include <comedilib.h>

const char *filename = "/dev/comedi0";
int main(int argc, char *argv[])
{
 lsampl_t data;
 int ret;
 comedi_t *device;

 /* Which device on the card do we want to use? */
 int subdevice = 0;
 /* Which channel to use */
 int channel = 0;
 /* Which of the available ranges to use */
 int range = 0;
 /* Measure with a ground reference */
 int analogref = AREF_GROUND;

 device = comedi_open(filename);
 if(!device){
 /* We couldn't open the device - error out */
 comedi_perror(filename);
 exit(0);
 }

 /* Read in a data value */
 ret=comedi_data_read(device,subdevice,
 channel,range,analogref,&data);

 if(ret<0){
 /* Some error happened */
 comedi_perror(filename);
 exit(0);
 }

 printf("Got a data value: %d\n", data);
 return 0;
}

Comedi shines in most data acquisition applications. In fact, Comedi's limit
generally resides in the hardware on which it's being run. Less expensive cards
typically have a slower scan rate ability. For fast data acquisition, most of the
higher priced cards come with onboard DMA, allowing an onboard processor to
handle the acquisition and allowing Comedi simply to route the acquired
buffered data.

Listing 2. Code Snippet Demonstrating More Advanced Scanning by Using

Commands and Triggers

 /* Goal: Set up Comedi to acquire 2 channels, and
 scan each set twice. Perform the acquisition
 after receiving a trigger signal on a digital
 line.
 */

 comedi_cmd c, *cmd=&c;
 unsigned int chanlist[2];

 /* CR_PACK is a special Comedi macro used to
 setup a channel, a range, and a ground
 reference

 */

 chanlist[0] = CR_PACK(0,0,0);
 chanlist[1] = CR_PACK(1,0,0);

 /* Which subdevice should be used? */
 /* Subdevice 0 is analog input on most boards */
 cmd->subdev = 0;
 cmd->chanlist = chanlist;
 cmd->chanlist_len = n_chan;

 /* Start command when an external digital line
 is triggered. Use digital channel specified
 in start_arg
 */

 cmd->start_src = TRIG_EXT;
 cmd->start_arg = 3;

 /* begin scan immediately following trigger */
 cmd->scan_begin_src = TRIG_FOLLOW;
 cmd->scan_begin_arg = 0;

 /* begin conversion immediately following scan */
 cmd->convert_src = TRIG_NOW;

 /* end scan after acquiring
 scan_end_arg channels
 */
 cmd->scan_end_src = TRIG_COUNT;
 cmd->scan_end_arg = 2;

 /* Stop the command after stop_arg scans */
 cmd->stop_src = TRIG_COUNT;
 cmd->stop_arg = 2;

 /* Start the command */
 comedi_cmd(device, cmd);

Fast scan rates don't translate to fast processing, however. Due to the non-
deterministic nature of the stock Linux kernel, it's virtually impossible to handle
acquisition and processing in real time—that is, to maintain strict scheduling
requirements for a process. Help is available, however. The Linux Real-Time
Application Interface (RTAI) and RTLinux are two of a small number of add-on
packages that allow for better timing control in the kernel. Both packages
provide interfaces to Comedi.

The basic idea behind these real-time interfaces is simple. Instead of running
the kernel as the monolithic process, run it as a child of a small and efficient
scheduler. This design prevents the kernel from blocking interrupts and allows
it to be preempted. Then, any application that needs real-time control of the
system can register itself with the scheduler and preempt the kernel as often as
it needs to.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f2.large.jpg

Figure 2. Normal Linux Process Scheduling vs. Real-Time Linux Process Scheduling

 A Lab Example

AEI maintains a number of testing chambers for diesel engines, known as test
cells. In a cell, an engine is equipped with a number of temperature and
pressure measurement devices. A frequency measurement device also is used
to measure the rotational speed of the engine. Finally, the engine is connected
to a dynamometer, which simulates actual driving conditions by varying the
resistance against the spinning engine. This results in generated torque, which
is measured as well.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f3.large.jpg

Figure 3. An Engine Being Instrumented

The actual scan rate of the engine data is slow, only 20 times per second. If the
measurement of this data were the only required job, the overall setup would
be straightforward. However, a number of variable parameters must be tuned
and controlled with the newest acquisition of each set of numbers. The engine
throttle position and dynamometer load amounts must be varied slightly to
maintain the engine speed at a specific condition. Valves in the cell controlling
cooling water flow must be adjusted to keep engine coolant temperatures at
constant levels. Safety measures must be checked to determine that no
catastrophic problem has occurred.

Figure 4. Overview of Engine Measurement and Control with Comedi

All of these checks and new control values must be taken care of before the
kernel can return to handling the rest of its scheduling. If the Linux kernel were

https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f4.large.jpg

to handle this scheduling on its own, it is quite possible that everything would
work properly. However, it's impossible to determine beforehand when each
stage of the process will be executed. With real-time extensions, however, the
problem becomes trivial.

A real-time kernel is not without its downsides. While the real-time scheduler is
executing some process at a fixed interval, the Linux kernel basically is put on
hold. This means that a real-time process must be fast and efficient, and it must
relinquish control back to the kernel as quickly as possible. Failure to do so
results in sluggishness in the non-real-time portion of the system. If something
goes wrong in the real-time process and control never goes back to the kernel,
a complete system lockup can occur as well.

 A Practical Example

Laboratory aside, sometimes it's interesting and fun to put Comedi to work at
home. Low-end multipurpose data acquisition cards can be purchased for $99–
$299 US, depending on brand, complexity and acquisition rate. Some examples
of home projects include monitoring temperature in various parts of the house
or scanning a magnetic sensor on a garage door to remind you that it's still
open.

One interesting aspect of the personal computer is that parallel port lines can
be controlled individually. Using Comedi, it's trivial to turn on and off these
digital lines. When used with some form of relay, these digital lines can turn off
and on anything imaginable.

Although parallel ports toggle between 0 and 5 volts, they typically do not have
the capacity to source much electrical current. That said, it's a bad idea to
connect the parallel port line directly to a device to turn it on or off without
adding some kind of buffer circuitry. Many Web sites exist that explain how to
create these circuits.

I use Comedi, an old 486 and two parallel ports to create an annual holiday
light show. Lights are hung on the house in normal fashion, and a pair of wires
for each set of lights is run back into the control room (a spare bedroom, in this
instance). These power wires are connected to a custom-built circuit board that
houses mechanical relays that send the power to the lights when they receive a
5-volt signal from the parallel port. A simple C program uses Comedi function
calls to control the parallel port lines digitally, that is, to turn on and off the
lights. Simple text files tell the program when to turn various lights on and off.
And, the neighborhood receives a treat.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f5.large.jpg

Figure 5. Interface Board for Parallel Port Light Show Display

 Conclusion

Data acquisition is extremely valuable in the laboratory. The generic interface
that Comedi provides allows great ease of use in Linux for a large number of
available DAQ cards. As the popularity of Linux grows, the importance of having
an interface such as Comedi's becomes vital.

Furthermore, as the low-end DAQ cards become even less expensive, Linux-
based data acquisition becomes more and more appealing to hobbyists and
do-it-yourselfers. What used to be an expensive set of software and hardware
now is a viable method of implementation for a multitude of applications.

Resources for this article: /article/7610.

Caleb Tennis has been using Linux since 1996. He was the release coordinator
of the KDevelop Project and now is focusing his attention on maintaining KDE
for Gentoo. Besides overseeing engineering at a diesel engine test facility, he
also teaches Linux part-time at a local college.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7332f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7610.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Declic: Linux 2.6 on the International Space Station

Taco Walstra

Issue #124, August 2004

The Declic experiment program on the International Space Station needs Linux
to integrate reliably with a variety of microcontrollers with minimal intervention
from the crew. Here's how the development is going.

In October 2001, three French scientists defined a new project for the study of
phase transitions of fluids under microgravity conditions. Declic (Dispositif pour
l'Etude de la Croissance et des Liquide Critiques) permits a wide experimental
program, operated from the French USOC control centre in Toulouse in close
relationship with the other control centers located at NASA and the European
Space Agency (ESA). Scientists can do telescience experiments with real-time
data sent from the Declic facility to ground, with almost no help from
astronauts.

The only astronaut help needed is some exchanges of experiment boxes, the
so-called inserts. ALI, one of the inserts, stands for Alice-like insert and refers to
the previous experiments, Alice and Alice-2, from the Mir Space Station. Alice
stands for Analyse des Liquides Critiques dans l'Espace (analyses of critical
fluids in space). A critical fluid is a fluid at a specific temperature and density
where the transition between fluid and gas behaves differently compared with
the same fluid on Earth.

The French governmental space organization CNES is developing Declic, and it
awarded the contract to the European aerospace organization EADS, a joint
venture of the German Daimler-Chrysler Aerospace AG, the French
Aerospatiale Matra and Spanish CASA. EADS is using four subcontractors for
the actual development and is doing the integration tests and project control in
Bordeaux. The University of Amsterdam in the Netherlands had experience
with several of the previous critical point programmes, therefore we are
developing a substantial part of Declic: two thermostat boxes where the
experiments take place, the electronics, software for thermal regulation and
parts of the data acquisition for scientific research. Two other subcontractors

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

are working on optics, data processing electronics, software for video cameras,
data storage and the ISS interface. The fourth subcontractor is developing a
complete experiment insert for solidification experiments. Electronics and
software for this experiment also are being developed at our institute.

Figure 1 offers a simple overview of the several parts of the Declic facility, which
basically contains two large boxes. The first box holds the experiment insert,
which is surrounded by optics, video cameras and different sorts of sensors for
observing the scientific phenomena. The fluids enclosed in a safe containment
inside the insert are stabilized at a high-precision temperature. It's no simple
house thermostat; it's a high-accuracy thermal control system that can keep
fluids within 10 micro Kelvin of a specific temperature.

The second box (see also Figures 8 and 9) contains the electronics for data
handling and temperature control. The electronics and software situated in this
box is what I describe in this article. Two important subsystems are located in
this second box, the power and data handling system (PDHS) and the central
regulation electronics (CRE). The PDHS consists of a CompactPCI industrial
Pentium PC running Linux, some microcontrollers and commercial PCI cards. It
collects data coming from video cameras and the CRE, stores it on hard disk
and interfaces with the ISS computers. Although a real-time link to ground
exists, most of the data needs to be stored on hard disk. A removable hard disk
will travel by space shuttle to give the scientists their valuable measurement
data.

Figure 1. Block diagram of the Declic facility. The power and data handling system is a
Pentium-based system running Linux.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f2.large.jpg

Figure 2. The sample cell unit of the ALI insert at the University of Amsterdam. The sample cell
contains the liquid to be studied at a critical temperature. The blue box behind the SCU is the
insert box.

Figure 3. The ALI insert for study of liquids at critical point at low temperatures. The right side
contains the microcontrollers and electronics for thermal control and scientific data
acquisition.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f4.large.jpg

Figure 4. Bart van Deenen Doing Thermal Testing of the ALI Insert

https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f4.large.jpg

Figure 5. ALI Insert Box with Sample Cell Unit

https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f6.large.jpg

Figure 6. The DSI insert for solidification experiments at COMAT in Toulouse (France). The
hole at the top is for accessing video cameras once located inside the Declic facility.

Figure 7. CRE Electronics Box to Be Located near the PDHS

https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f8.large.jpg

Figure 8. CRE Electronics Box during Testing

https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7190f8.large.jpg

Figure 9. The HTI (High Temperature Insert) during manufacturing at the University of
Amsterdam; this insert will be used to study water at 373°C.

Temperature control is handled by the CRE. The regulation electronics and
software are able to control different types of thermostats inserted in the first
box. In the previous experiments, one used fluids with a critical point of about
45°C; this will be done again in the first insert.

Another insert will study the critical point of water, which is near 373°C. At this
temperature, water shows an unexpected aggressive behavior, which is
scientifically very interesting. Currently, five different experiment inserts are
being produced that will be situated inside Declic, all having different
characteristics. For the critical point inserts developed in Amsterdam, we have
chosen to use platinum resistors for temperature measurements, because it's
the only sensor still functional at high temperatures that can maintain the

required accuracy. All these sensors are directed to microcontroller boards with
analog-to-digital converters of 24 bits. Still, these 24 bits are not enough to
reach the high accuracy expected, so all values of the A/D converter first are
filtered digitally by an FPGA, a programmable chip. The microcontroller sends
the data to the CRE Pentium PC; the CRE CPU gathers all data from different
microcontrollers and sends the collected data on a TCP stream to the PDHS.

 μC/OS and Linux

The complete Declic contains about ten small microcontrollers for dedicated
hardware-related tasks, including the activation of heaters, the acquisition of a
pressure or temperature sensor and controlling a stepper motor. The
microcontrollers we use in Declic have a UDP/IP interface and run the real-time
operating system μC/OS-II. Development of the source code for these
controllers, however, was initialized on Linux, using an OS emulation layer.

Developing software for microcontrollers often is an annoying process of
switching between downloading cross-compiled data over a serial link to a test
board, debugging, recompiling your source code and resetting the test board. If
you are lucky, the cross-compiler is Linux-friendly; unfortunately, many
compiler environments are not. By using the Microsoft Windows emulator
Wine, many of the cross-compilers can work together with Linux. In such a
situation, you can use all the Linux tools that make software development so
much easier. For our system, we chose μC/OS-II as a small real-time operating
system able to run on 8-bit microcontrollers. μC/OS-II (often abbreviated to
ucos) is distributed in source code form. You can purchase the book from the
author and receive the source files of the OS, which can be ported to numerous
microcontroller types. All the fundamental real-time OS aspects are there,
including semaphores, mutexes and multitasking.

Every ucos function has a GNU C equivalent. For development, we used fake-
ucos, a simple set of wrapper functions around standard GNU C equivalents. By
using fake-ucos, it's possible to develop your microcontroller code on Linux.
Then, you simply exchange the fake-ucos library for the real ucos source code
and cross-compile the code for your favorite microcontroller. Of course, you
need to extend all hardware-specific code details afterward, but it's certainly a
great help in the early phase of a project.

 Insert Definition Files

The Declic microcontrollers need to do different tasks, but the process actually
comes down to reading something or controlling/activating something—read
an AD converter, activate heater x, move stepper motor 1 to location y. The CRE
computer, running generic software, needs to know the capability of each
microcontroller and the insert characteristics. Each insert is different, and for a

future insert it's impossible to know any characteristic. How do we control an
unknown set of things and read an unknown set of sensors of unknown type by
software we want to keep as generic as possible?

We moved all hardware-specific control elements (AD conversions, activating
heaters and stepper motors) into the microcontroller software. The
microcontrollers are inside the insert, so each insert has its own hardware
microcontrollers and software. A generic C program runs on the CRE main
Linux computer for interfacing the PDHS with all the microcontrollers. This
program handles the regulation algorithms and a Tcl command interface, which
I cover later, and needs to collect all data coming in at different rates from all
the controllers. The program is generic because it can control any type of
insert, including future ones. High-accuracy thermal control algorithms are
dependent on the type of insert; but these parts of the software are written in
as a separate module. The command set is insert-independent, because it
references only items and the items are described in XML format. An item can
be a sensor (something that has a value we can read) or an actuator (something
that can be written to). All these items are described in an Insert Definition File
in XML format. A short example is given in Listing 1.

Listing 1. Part of an Insert Definition File

<ins_def> <board>

 <item>
 <pseudo_sensor name="BUILD_VERSION"
 max_sample_frequency="1"
 device_data_type="CHAR32">
 </pseudo_sensor>
 </item>

 <item>
 <sensor name="YSI_PRESSURE"
 max_sample_frequency="1"
 device_data_type="INT24"

 SI_data_type="FP32"
 </sensor>
 </item>

 <item>
 <desc>The Dallas board temperature sensor.
 </desc>
 <sensor name="DAL_ALI_POWER_BOARD2"
 dallas="1"
 device_data_type="INT16S"
 SI_data_type="FP32"
 unit="C">

 <parameter type="CHAR32" value="">
 </parameter>

 </sensor> </item>

 <item>
 <actuator name="PWM_OTSF"
 reg_actuator="1"
 upper_limit_SI="8.8"
 device_data_type="INT16U"
 SI_data_type="FP32"
 unit="W">

 <parameter type="FP32" value="65.0">
 <desc>Resistance of heater</desc>
 </parameter>

 <parameter type="FP32" value="30.0">
 <desc>power supply voltage for this
 channel</desc> </parameter>

 </actuator>
 </item>

 </board>
 ...
</ins_def>

The Insert Definition File describes the insert from a software point of view. It
consists of a description of all sensors and actuators (items) that can be
controlled by a certain microcontroller board. Every item can have a device and
an SI value. The device value represents the raw data from, for example, an AD
converter, while the SI value is the human-readable converted value, such as
Watts, Ohms or degrees Celsius. In this way, we are able to write a Watts value
to a heater, and it's up to the controller to figure out what exactly should be
written to an FPGA to get the heater to produce this number of Watts. The
microcontroller uses the parameters for these calculations, which make the
source code independent from such hardware characteristics as heater
resistance or power supply voltage. When we read the XML file, the items get
numbers in two different ways: an incremental counting for all items of the
insert and a local counting for the items controlled by a specific microcontroller
board. The scientist has a simple list of all available items that can be controlled
with a set of Tcl commands.

 Experiment Description in Tcl

In past experiments on the Russian Mir station, all experiment timelines had to
be stored on a computer. Experiment control existed by switching on the
system and executing a series of commands. The experiment command list had
few possibilities to act on specific occurring phenomena or experiment phases.
In an early stage of the Declic development, the French company EREMS,
responsible for the PDHS development, came up with the idea to use Tcl for the
interface. Scientists now are given a complete programming language to
formulate the experiment. They can execute commands, store values from
read commands in variables and make decisions using the Tcl language for
configuring the next executed command. The science script is located on one of
the PDHS hard disks and started from the ground. For example, a Tcl science
script can contain Tcl statements to bring the experiment to a specific
temperature, start the video if the insert has reached a stable temperature and
start the acquisition of some interesting sensors.

When writing a science Tcl script, the scientist doesn't need to know much
about the hardware; a simple list of items with their numbers is enough.
Reading a certain temperature sensor can be done in this way by executing the
Tcl command cre_get_values -item 34. The science script executes on
the PDHS, and a CRE command results in passing the Tcl command to the CRE
computer. The CRE knows that sensor 34 is actually the third sensor on a
Platinum sensor controller board. It sends a binary equivalent command to this
board, cre_get_values -item 3. The controller makes a data acquisition
of the sensor and responds with the value. This response once again is sent
back to the PDHS and the running Tcl script.

Now, suppose you want to add an item to the Insert Definition File—how do
you keep this XML file consistent with the microcontroller software? It's easy for
a Linux system to interpret XML files, but small 8-bit controllers certainly cannot
do such things. Adding one item to the Insert Definition File, however, can
change all item numbers by one, making the local item numbers no longer
consistent with the software implementation. The solution is found in
generating C code and header files automatically from the XML file. Putting
both files into the Makefile keeps everything consistent. Listing 2 gives a small
example of such a generated C file.

Listing 2. Excerpt of a C File Generated from an Insert Definition File in XML

....
char item_names[]={
 "BOARDVERSION",
 "BOARDID",
 "DAL_ALI_POWER_BOARD1",
 "PWM_OTSF",

 "U_FPE"};

void init_items(void){ t_item *items;

 item = g_items[ITEM_NR_BOARDID];
 item-> item_type=pseudo_sensor;
 item-> itemnr=0;
 item-> device_data_type=11;
 MALLOC(item-> device_value, void, 32);
 item-> SI_data_type=0;
 item-> SI_value=NULL;
 item-> in= NULL;
 item-> out= NULL;
 ...

In Listing 2, the last two entries are pointers to functions that perform the
actual acquisition for this item when it's a sensor; it also performs the action for
an actuator.

Using the 2.6 Kernel

We saw that a single Tcl command results in a multistage command
transmission between different Declic subsystems. It's possible to acquire
multiple sensors with a single Tcl command, even if they are distributed over
several microcontrollers. This results in the arrival of several packets on the
CRE computer that need to be collected and sent as one TCP packet to the
PDHS. In such cases, a responsive Linux kernel is crucial.

The central CPU of the CRE uses the new 2.6 kernel. It is compiled into a Net-
bootable image: the CPU boots using the bootp and TFTP protocols for LAN
booting. The image is located on the hard disk of the PDHS, which is booted in a
normal way from hard disk. All the microcontrollers boot in the same way.
When data transfers take place between microcontrollers and the CPU, a
responsive operating system is necessary: we don't want to have the system
interrupting the transfers for more than 20ms as sometimes happens in kernel
2.4.

The requirements are soft real time here, and 2.6 fulfills these requirements. All
we need is a kernel that immediately triggers a C thread in the main CRE
application when data arrives from a microcontroller. The microcontrollers
have hard real-time requirements, because they need to be responsive to such
hardware events as hardware counters and interrupting devices. Our major
application running on the CRE central processor has no such demands. When
we started to run the application, using Linux with a 2.4 kernel with several
microcontrollers sending data, we encountered timeout problems for packets
that were not received in time; although the contents of these packets showed
they were sent with correct timestamps. The major improvement with the 2.6
kernel is the low latency of system interrupts.

Conclusion

Linux nowadays is a common tool for space-related projects, whereas several
years ago, proprietary systems, such as VRTX, QNX or VxWorks, were leading. In
addition, this past year even led to FlightLinux, a standard Linux distribution
adapted to spacecraft environments. Open-source software is of crucial
importance for these kinds of projects, and our experience with Linux has
proven that it has a great future in space.

Resources for this article: /article/7621.

Taco Walstra is a software engineer at the University of Amsterdam. He enjoys
rock climbing and playing different types of lutes. He can be reached at
walstra@science.uva.nl.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7621.html
mailto:walstra@science.uva.nl

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Snooping the USB Data Stream

Greg Kroah-Hartman

Issue #124, August 2004

Follow along with the kernel hacker's actual problem-solving process as the
quest to add support for a new device begins.

Day 1: I open the box to see a small USB device—no bigger than a quarter—a
CD and a note from my editor, “Make this work on Linux!” “Okay”, I think, “this
should be easy.”

Figure 1. MARX Software Security's CrypToken

I plug the device in to my laptop and run a small program called usbview to
learn what the Linux kernel thinks this device is (Figure 2). This device must be
calling itself a USB CrypToken, as that is the string contained in the device.
Unfortunately, the device name is in red, which means no kernel driver is

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/124/7582f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7582f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7582f1.large.jpg

bound to the device. I either have to write one or find a way to use libusb to talk
to the device from user space (see my article “Writing a Real Driver—in User
Space”, LJ, June 2004, for more information about libusb).

Figure 2. usbview identifies the device by vendor and product ID.

Not content to rely on pretty GUI programs, I poke around in the /proc/bus/
usb/devices file to get the raw device information. The section that describes
this device looks like this:

T: Bus=01 Lev=02 Prnt=03 Port=02 Cnt=01 Dev#= 4 Spd=1.5 MxCh= 0
D: Ver= 1.00 Cls=ff(vend.) Sub=00 Prot=ff MxPS= 8 #Cfgs= 1
P: Vendor=0d7a ProdID=0001 Rev= 1.07
S: Manufacturer=Marx
S: Product=USB crypToken
C:* #Ifs= 1 Cfg#= 1 Atr=80 MxPwr= 16mA
I: If#= 0 Alt= 0 #EPs= 0 Cls=ff(vend.) Sub=00 Prot=ff Driver=(none)

Curious to know whether any other Linux user has tried this device, I consult
the Linux USB Working Devices List (see the on-line Resources section).
Plugging the vendor ID of 0d7a in to the Quick Search field results in no records
found. Perhaps this project will take more work than I thought.

Day 2: The CD, where did I toss it? I locate it and put it in the drive and, look,
there's a file called linux.txt on it. Wow, a vendor that acknowledges that Linux
might be a viable operating system to support—things sure have changed over
the years. After poking around further and reading the documentation on the
CD, I realize the device is a small crypto token that can be used to do all sorts of

fun things, such as read a unique serial number from the device (each device is
different), encrypt data through the device with a 128-bit key stored only in the
device and save data on the device in a secure storage area.

On the CD is a shared library that can be used to talk to the USB device to allow
a program to access the functions provided by this device. Also present is a
small test program that shows how the different library functions work. The
library uses libusb to talk directly to the device from user space, which means
that a kernel driver is not necessary for this device. The library's license does
not allow it to be used within a program that would be licensed under the GPL,
however, which is unfortunate for many potential uses. I need to find some way
to allow GPL programs to talk to the USB device.

Day 3: While rummaging through my old collection of USB patches, I dig up a
reference to a developer who modified the kernel usbfs core code to log all
data that flows through it. This patch would allow anyone to read the raw USB
data for any program that uses usbfs to talk to a USB device. Because libusb
uses usbfs to communicate with USB devices, this might offer a way to reverse
engineer this device. Unfortunately, the patch wasn't present with the
reference, and no amount of digging on the Internet turned up any real code.

Day 4: As there is no available patch to do what I want to do, I might as well do
it myself. So, off to grab the latest 2.6 kernel source tree and dive in.

The files inode.c, devices.c and devio.c in the drivers/usb/core/ directory of the
kernel source tree implement the usbfs filesystem. The main filesystem code is
in the inode.c file. It contains all of the various VFS code that creates a virtual
filesystem and the virtual files within it. The file devices.c handles the creation
and reading of the /proc/bus/usb/devices file. This file shows all USB devices
and information for those devices in the system at the present time.

The file devio.c controls the raw access of USB devices through the usbfs
filesystem. For a user-space program to talk to a USB device through usbfs, it
needs to use the ioctl() command on a file that represents the USB device. All of
the different ioctl messages that can be sent to the USB devices through usbfs
are detailed in the include/linux/usbdevfs.h file.

So, in order to log all accesses to all devices through usbfs, the devio.c file
should be modified. Digging into the file, the function usbdev_ioctl looked like
the proper place to do this logging. It is called for every ioctl call to a usbfs file.
Within that function is a big switch statement that calls the proper functions,
depending on the different ioctl command. That is the perfect place to log what
kind of command was sent to the device. So, I added a simple printk() call to
each case statement, causing them to look like this:

...
case USBDEVFS_CLAIMINTERFACE:
 printk("CLAIMINTERFACE\n);
 ret = proc_claiminterface(ps, (void __user *)arg);
 break;

case USBDEVFS_RELEASEINTERFACE:
 printk("RELEASEINTERFACE\n");
 ret = proc_releaseinterface(ps, (void __user *)arg);
 break;
...

A simple compile, install and module load later confirmed that every usbfs
access is now logged to the kernel log, which can be seen by running the dmesg
program. I determined that running the lsusb program as lsusb -v produced
a lot of usbfs accesses as the program retrieves all of the raw USB configuration
data from all devices.

Day 5: Now that the different kinds of usbfs accesses can be noticed easily, it is
time to log the data these accesses generate. In looking at the description of
the device in the /proc/bus/usb/devices file, it appears that I care only about
the accesses to the control endpoint, because there are no endpoints assigned
to this device.

Digging further into the devio.c file, I determine that the proc_control() function
handles all control messages. There, the code determines whether the request
is a read or write control message with the code:

if (ctrl.bRequestType & 0x80) {

The USB bRequestType variable is a bitfield, and the uppermost bit determines
the direction of the request. So, in the read section of this if statement I add the
lines:

printk("control read: "
 "bRequest=%02x bRrequestType=%02x "
 "wValue=%04x wIndex=%04x\n",
 ctrl.bRequest, ctrl.bRequestType,
 ctrl.wValue, ctrl.wIndex);

to log the control request information. After the read has completed, I add the
following lines to log the actual data read from the device:

printk("control read: data ");
for (j = 0; j < ctrl.wLength; ++j)
 printk("%02x ", ctrl.data[j]);
printk("\n");

After doing much the same modification to the write section of the if statement,
I build, reload the usbcore modules and verify that I now can log all control
messages to and from the device. The messages returned are:

CONTROL
control read: bRequest=06 bRrequestType=80 wValue=0300 wIndex=0000
control read: data 00 00 61 63

Day 6: Looking at the modifications I have made to the kernel code, I think this
work might be something other users might like to have. So, it is time to clean
up the code to a state that the USB maintainer might accept for the main kernel
source tree.

First, I recognized that the calls to printk() are incorrect. All printk() calls must be
accompanied by a proper logging level. These logging levels are added to printk
calls by pre-appending the proper KERN_ values to the message. The file
include/linux/kernel.h contains the following valid values that must be used:

#define KERN_EMERG "<0>" /* system is unusable */
#define KERN_ALERT "<1>" /* action must be taken immediately */
#define KERN_CRIT "<2>" /* critical conditions */
#define KERN_ERR "<3>" /* error conditions */
#define KERN_WARNING "<4>" /* warning conditions */
#define KERN_NOTICE "<5>" /* normal but significant condition */
#define KERN_INFO "<6>" /* informational */
#define KERN_DEBUG "<7>" /* debug-level messages */

So, I change the printk calls in the usbfs_ioctl() function from:

printk("CLAIMINTERFACE\n);

to:

printk(KERN_INFO "CLAIMINTERFACE\n);

Now the kernel janitors should not complain about improper printk() usage.

In looking further at the logging messages, however, it is hard to determine for
what exact device the message is being logged. More information needs to be
added to the printk() calls. Luckily, some macros already in the include/linux/
device.h file can help us. They are the dev_printk() macro and its helper macros,
dev_dbg(), dev_warn(), dev_info() and dev_err(). These macros all need an
additional pointer to a struct device variable, which allows them to print out the
unique device ID for the message. So I change the printk() calls again to look
like this:

dev_info(&dev->dev, "CLAIMINTERFACE\n");

Then the control message printk() calls are changed to:

dev_info(&dev->dev, "control read: "
 "bRequest=%02x bRrequestType=%02x "
 "wValue=%04x wIndex=%04x\n",
 ctrl.bRequest, ctrl.bRequestType,
 ctrl.wValue, ctrl.wIndex);

dev_info(&dev->dev, "control read: data ");
for (j = 0; j < ctrl.wLength; ++j)
 printk("%02x ", ctrl.data[j]);
printk("\n");

The printk calls that dump the data do not need to be changed, as they still are
printing on the same line as the call to dev_info().

Now the log messages are much more informative, looking like the following:

usb 1-1: CONTROL
usb 1-1: control read: bRequest=06 bRrequestType=80 wValue=0300 wIndex=0000
usb 1-1: control read: data 00 00 61 63

I can determine exactly what USB device is being talked to, which helps me
weed out the messages for devices I do not care about.

Day 7: Oops, I now realize that if I expect this kernel change to be accepted by
the community, I had better not always generate these messages. Otherwise,
everyone would have their system logs overflowing with messages they do not
care about. How to log messages only when asked?

I first look into making a new kernel build configuration option. A simple
modification of the drivers/usb/core/Kconfig file adding a new option is simple,
but in examining the required code changes, I soon realize that wrapping all of
the new logging statements in a #ifdef CONFIG_USBFS_LOGGING statement
would make the USB maintainer reject my kernel patch. #ifdef is not generally
allowed within kernel code, as it cuts down on readability and makes
maintaining the code over time almost impossible.

Instead, I look at making an option that can be changed at runtime. I add the
following lines of code to the devio.c file:

static int usbfs_snoop = 0;
module_param (usbfs_snoop, bool, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC (usbfs_snoop, "true to log all usbfs traffic");

This adds a new module parameter to the main usbcore module called
usbfs_snoop. This can be seen after building the code by running the modinfo
program:

$ modinfo usbcore
license: GPL
parm: blinkenlights:true to cycle leds on hubs
parm: usbfs_snoop:true to log all usbfs traffic

By loading the module with the following line:

modprobe usbcore usbfs_snoop=1

the option can be enabled by the user.

I used the definition module_param() instead of the old-style MODULE_PARM(),
as this is the proper way to describe module parameters in the 2.6 kernel. The
main difference is this definition has a third parameter. This third parameter, if
set to something besides 0, causes the parameter to show up in sysfs and
allows a user to query and modify the option while the module is loaded. With
this code included, the usbcore module's directory in sysfs looks like:

$ ls -l /sys/module/usbcore/
-r--r--r-- 1 root root 4096 May 13 15:33 blinkenlights
-r--r--r-- 1 root root 4096 May 13 15:33 refcnt
-rw-r--r-- 1 root root 4096 May 13 15:33 usbfs_snoop

The module now can be loaded as normal:

modprobe usbcore

When I decide to turn on logging I simply do:

echo 1 > /sys/module/usbcore/usbfs_snoop

and the kernel variable usbfs_snoop in the devio.c file is changed on the fly.

Now that I can determine whether the user wants to print out snooping
messages, I need to modify the dev_info() calls again. I create the following
macro to do this:

#define snoop(dev, format, arg...) \
 do { \
 if (usbfs_snoop) \
 dev_info(dev , format , ## arg); \
 } while (0)

This macro tests the value of the usbfs_snoop variable, and if true, the
dev_info() line is called. The macro is wrapped in a do { } while (0)

statement to allow it to be used in any kind of code without having to worry
about any side effects. All kernel macros containing more than one line of code
are written in this way for this reason. For more details about this, read the
kernel newbies FAQ (see Resources).

I next change all previously added calls to dev_info() to a call to snoop(), causing
the code to look like:

snoop(&dev->dev, "control read: "
 "bRequest=%02x bRrequestType=%02x "
 "wValue=%04x wIndex=%04x\n",
 ctrl.bRequest, ctrl.bRequestType,
 ctrl.wValue, ctrl.wIndex);

But where the data is printed out, the snoop() macro does not work properly. I
need to check the value of the usbfs_snoop variable directly, wrapping the code
in an if statement:

if (usbfs_snoop) {
 dev_info(&dev->dev, "control read: data ");
 for (j = 0; j < ctrl.wLength; ++j)
 printk("%02x ", ctrl.data[j]);
 printk("\n");
}

I'm happy, and hopefully the USB maintainer also will be happy with the
changes. I read how to generate a proper kernel patch by consulting the file
Documentation/SubmittingPatches, generate a diff file and e-mail it off.

We now have a way to snoop all usbfs traffic, which can help us reverse
engineer any device that uses libusb to communicate with a USB device. It also
allows us to snoop any USB accesses from a guest OS running in a VMware
session, allowing the possibility to reverse engineer Microsoft Windows USB
drivers much more easily. But all of that has to wait until the next column.

Resources for this article: /article/7605.

Greg Kroah-Hartman currently is the Linux kernel maintainer for a variety of
different driver subsystems. He works for IBM, doing Linux kernel-related
things, and can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7605.html
mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 At the Forge

Weblogs and Slash

Reuven M. Lerner

Issue #124, August 2004

User journals with comments are one feature of the complex but battle-tested
community system Slash. Give users the power to build friend and foe
networks, moderate one another's comments and more.

Last month, we looked at the installation and basic administration of Slash, the
open-source Weblog and community system that powers the popular Slashdot
site, among others. Slash, which is distributed under the GNU Public License,
takes advantage of Perl, mod_perl and Apache.

 Creating a Journal

Slash uses the term journals for its Weblogs. Each user on the system can keep
his or her own journal; this functionality is available by clicking Journal on the
You menu, which typically is displayed along the left side of the screen. This
invokes journal.pl, which is located inside of your site's Slash directory. On my
computer, named chaim-weizmann, I found journal.pl in /usr/local/slash/site/
chaim-weizmann/htdocs/journal.pl. The code is easier to read than I imagined,
but even if you are an experienced Perl hacker, you should find that a great
many functions are centralized and customized for the Slash environment. That
said, changing Slash does not appear to be terribly difficult, if you are
interested in tinkering with it.

The first time you click on the Journal link, you see a screen that looks like the
screenshot pictured in Figure 1. A message there indicates you have not
created any journal entries, and several links offer you the chance to write in
your journal or edit existing entries.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/124/7585f1.large.jpg

Figure 1. A New Slash Journal without Any Entries

Let's create a new journal entry by clicking on the Write in Journal link. This
opens a new page, shown in Figure 2. We enter a subject, a topic (a
combination of the global list of topics, along with user journal), an indication of
whether you want to allow others to comment on your journal entry and the
entry itself.

Figure 2. The journal entry page is where you compose new text for your journal.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7585f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7585f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7585f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7585f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7585f2.large.jpg

When you have finished writing a journal entry, you can click the Preview
button, which allows you to look at your entry before posting it. This seems a
bit patronizing to me; although I understand it is useful and important for
people to proofread and double-check their work before submitting it, at times
I want to move ahead and prefer not to preview my work.

Next to the Preview button is a selection list that allows you to indicate how
your journal entry should be formatted. The default, HTML format, allows you
to stick HTML tags into your journal, so that you can create boldface
and <i>italic</i> text. Of course, HTML does not differentiate between types of
whitespace, which means choosing this formatting method requires you to
separate paragraphs with <p> tags. It also means you can enter a literal < or >
character only by using the appropriate HTML entity, < or &rt;.

The extrans formatting option would have been my preference, if I had known
what it was from the beginning: extrans assumes that every character should
be taken literally and converts multiple newline characters into HTML
paragraph breaks. I realize that the option says “HTML tags to text”, but that
seems less important than the fact that paragraph separations are preserved in
the final copy.

Once you have previewed your entry at least once, a Save button appears
between the Preview button and formatting selection list. You can continue to
modify and preview your journal entry, or you can save it and make it viewable
by everyone else by clicking on the Add button). Indeed, anyone can view the
journal I created on chaim-weizmann by pointing their browsers to the URL
chaim-weizmann/~reuven/journal.

 Comments

As often is the case with other Weblog and journal software, Slash makes it
possible and easy to solicit comments from other users. By default, this option
is off, and the instructions indicate clearly and repeatedly that turning
comments on means they remain on forever.

This option is set for each individual journal entry; some can allow comments
and others can forbid them, as users see fit. You can change the default setting
by clicking the Edit Preferences link at the top of the journal page and then
selecting comments disabled or comments enabled, as appropriate. Because
you are setting only a default value, it has no effect on already existing journal
entries and comments.

Adding comments to a journal entry that has enabled them is somewhat less
than straightforward to the uninitiated. Each journal entry is followed by a
menubar (Figure 3), which both controls the display of the discussion and

http://chaim-weizmann/~reuven/journal

allows users to participate in it. I say that this is confusing because it is easy to
miss the Reply button, which allows you to add to the discussion, and the rest
of the menubar, which changes the way the discussion is viewed.

Figure 3. A Slashdot-style menu follows each journal entry.

Replying actually is slightly more complicated than this. To reply to the original
posting, click on the Reply button that immediately follows the article. But, if
you want to reply to a comment, thus creating a threaded discussion, you
instead click on Reply to This link, which appears immediately beneath each
comment. This structure makes logical sense, but I must admit that even after
years of following and participating in discussions on Slash-powered sites, it
took me some time to find and understand the distinction between the two
methods.

Interface aside, adding a comment is identical to adding a new posting, except
you cannot restrict people from commenting on what you have written. Enter a
subject and the text of the comment, indicate the formatting and then either
preview or add your comment. Slash allows you to post comments as an
anonymous user, known as Anonymous Coward, by checking the post
anonymously box next to the entry. However, many administrators have
configured their systems to forbid such anonymous postings on the
assumption that anonymity reduces accountability.

Finally, the display settings make it possible to view a discussion in any of
several ways. The threshold setting allows you to selectively view comments,
based on scores assigned by other members of the site's community.
Moderation and the related meta-moderation feature can be activated by the

https://secure2.linuxjournal.com/ljarchive/LJ/124/7585f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7585f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7585f3.large.jpg

site's administrator, and they allow community members to determine which
comments deserve the most attention.

The display setting changes the way in which threaded discussions are shown. I
always have preferred to see such discussions in nested format, meaning that
responses always are visible, indented somewhat from their parent. By default,
Slash sites show the comments in threaded mode, which requires that you
explicitly ask to view a comment before it is visible.

Finally, you can ask to see the comments in various orders. Journal entries
always are displayed, Weblog-style, starting with the newest entry and ending
with the oldest one. Comments to these journal articles, by contrast, normally
are displayed in chronological order, with the oldest comment at the top.
Therefore, keeping up with a discussion over time requires scrolling down to
the bottom of the screen.

 Journal Communities

From what we have seen so far, Slash seems to provide a simple way for many
users to create and maintain their own journals. However, there is no real
interaction among these users or their journals; everyone is insulated from one
another.

But Slash was written to promote on-line communities, and it comes with a
number of features that promote collaboration and integration. To begin with,
Slash keeps track of statistics across all of the journals in the system. By clicking
on the Top 10 link in journal.pl (the main journal page), you can find out which
journals were updated most recently, which people have written the most and
which friends have written most.

The term “friends” I refer to here is not a synonym for community member.
Rather, every user in a Slash system can categorize other users as friends and
foes, creating an interesting web of interpersonal relationships similar to but
distinct from such sites as Orkut and LinkedIn.

The easiest way to mark someone as a friend or foe is to go to his or her home
page, typically ~username. Thus on my system, anyone can go to my home
page with the URL chaim-weizmann/~reuven. Next to the person's user name is
an icon indicating whether he or she currently is a friend (smiley face), foe (red
sad face) or neutral (the default, with what appear to be sunglasses and an odd
smirk). Clicking on this icon allows you to change your relationship with this
other person.

One big difference between Slash and various other personal networking and
community Web sites is the fact that such relationships are public. Any user on

http://chaim-weizmann/~reuven

a Slash site can find out who my friends and foes are. Although this probably
stops people from marking others as foes, because of the public
embarrassment and fallout that might result, it does mean that Slash can
create fascinating personal networks and relationship combinations. You not
only see a list of someone's friends, but the person's friends' friends, as well.

Each of these relationships is one-sided; A can be B's friend, but B can be A's
foe. When you go to someone's home page, you can look not only at the
person's friends and foes, but also at his or her fans (others who have marked
this person as a friend) and freaks (others who have marked this person as a
foe).

The biggest practical advantage to setting up a list of friends is the fact that
Slash keeps track of their journals and journal updates for you. Clicking on the
Friend's Journals link at the top of your home page brings up a list of your
friends with journals. This is the Slash equivalent of bookmarks or of an RSS
news aggregator. Putting people on your list of friends means you easily can
keep up with the journals that your friends have written.

 Should You Use Slash?

I have looked at Slash several times over the years, and each time I came away
fairly unimpressed. The code seemed hard to understand, the user interface
was ugly and the functionality seemed limited. Slash-based sites remain
relatively ugly, although this now is changeable, thanks to its use of the
Template Toolkit. The functionality still is quite limited when you compare it
with other community infrastructures and toolkits, such as Xoops and
OpenACS.

But, Slash was not designed for broad needs; rather, it tries to implement a
limited set of functionality and to do it well. In that regard, they really have
succeeded. use.perl.org is a great example of such a site, which both distributes
news articles and allows users to keep their own journals. If you want to
provide limited news and announcements, while making it possible for large
numbers of users to keep and comment on journals, Slash might be a good
way to go.

Further, I must admit that the code has improved dramatically over the years; it
now is possible to understand what is happening and even to modify or add
functionality if you are an experienced Web/database hacker. Granted, Slash
has many convenient functions that require something of a learning curve
before you can jump in and make changes, but this is true of all Web/database
toolkits, so it's unfair to say that Slash is different in this regard.

My main criticism of Slash, aside from issues having to do with distribution
versions (which remain in CVS) and documentation, is the lack of a standard
system for adding new functionality in the way that Xoops, OpenACS and Zope
have done through their various modules and packages.

 Conclusion

Slash, like much open-source software, is powerful, scalable, difficult for
newcomers to install and poorly documented. Unlike many other packages, it
also focuses on depth rather than breadth, providing more features than many
other toolkits, at the expense of extensibility and generalizability. And, if your
site is even beginning to approach the number of users or visitors that Slashdot
attracts, you would be wise to consider using it.

Resources for this article: /article/7607.

Reuven M. Lerner, a longtime Web/database consultant and developer, is now
a first-year graduate student in the Learning Sciences program at Northwestern
University. His Weblog is at altneuland.lerner.co.il, and you can reach him at
reuven@lerner.co.il.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7607.html
http://altneuland.lerner.co.il
mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kernel Korner

Storage Improvements for 2.6 and 2.7

Paul E. McKenney

Issue #124, August 2004

The Linux 2.6 kernel has improved Linux's storage capabilities with advances
such as the anticipatory I/O scheduler and support for storage arrays and
distributed filesystems.

Storage has changed rapidly during the last decade. Prior to that, server-class
disks were proprietary in all senses of the word. They used proprietary
protocols, they generally were sold by the server vendor and a given server
generally owned its disks, with shared-disk systems being few and far between.

When SCSI moved up from PCs to mid-range servers in the mid 1990s, things
opened up a bit. The SCSI standard permitted multiple initiators (servers) to
share targets (disks). If you carefully chose compatible SCSI components and
did a lot of stress testing, you could build a shared SCSI disk cluster. Many such
clusters were used in datacenter production in the 1990s, and some persist
today.

One also had to be careful not to exceed the 25-meter SCSI-bus length limit,
particularly when building three- and four-node clusters. Of course, the penalty
for exceeding the length is not a deterministic oops but flaky disk I/O. This
limitation required that disks be interspersed among the servers.

The advent of FibreChannel (FC) in the mid-to-late 1990s improved this
situation considerably. Although compatibility was and to some extent still is a
problem, the multi-kilometer FC lengths greatly simplified datacenter layout. In
addition, most of the FC-connected RAID arrays export logical units (LUNs) that
can, for example, be striped or mirrored across the underlying physical disks,
simplifying storage administration. Furthermore, FC RAID arrays provide LUN
masking and FC switches provide zoning, both of which allow controlled disk
sharing. Figure 1 illustrates an example in which server A is permitted to access

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

disks 1 and 2 and server B is permitted to access disks 2 and 3. Disks 1 and 3
are private, while disk 2 is shared, with the zones indicated by the grey
rectangles.

Figure 1. FibreChannel allows for LUN masking and zoning. Server A can access disks 1 and 2,
and server B can access 2 and 3.

This controlled sharing makes block-structured centralized storage much more
attractive. This in turn permits distributed filesystems to provide the same
semantics as do local filesystems, while still providing reasonable performance.

 Block-Structured Centralized Storage

Modern inexpensive disks and servers have reduced greatly the cost of large
server farms. Properly backing up each server can be time consuming,
however, and keeping up with disk failures can be a challenge. The need for
backup motivates centralizing data, so that disks physically located on each
server need not be backed up. Backups then can be performed at the central
location.

The centralized data might be stored on an NFS server. This is a reasonable
approach, one that is useful in many cases, especially as NFS v4 goes
mainstream. However, servers sometimes need direct block-level access to
their data:

1. A given server may need a specific filesystem's features, such as ACLs,
extended attributes or logging.

2. A particular application may need better performance or robustness than
protocols such as NFS can provide.

3. Some applications may require local filesystem semantics.
4. In some cases, it may be easier to migrate from local disks to RAID arrays.

However, the 2.4 Linux kernel presents some challenges in working with large
RAID arrays, including storage reconfiguration, multipath I/O, support for large
LUNs and support for large numbers of LUNs. The 2.6 kernel promises to help
in many of these areas, although there are some areas of improvement left for
the 2.7 development effort.

 Storage Reconfiguration

Because most RAID arrays allow LUNs to be created, removed and resized
dynamically, it is important that the Linux kernel to react to these actions,
preferably without a reboot. The Linux 2.6 kernel permits this by way of the /
sys filesystem, which replaced the earlier /proc interfaces. For example, the
following command causes the kernel to forget about the LUN on busid 3,
channel 0, target 7 and LUN 1:

echo "1" > \
/sys/class/scsi_host/host3/device/3:0:7:1/delete

The busid of 3 is redundant with the 3 in host3. This format also is used,
however, in contexts where the busid is required, such as in /sys/bus/scsi/
devices.

To later restore only that particular LUN, execute:

echo "0 7 1" > /sys/class/scsi_host/host3/scan

To resize this same LUN, use:

echo 1 > /sys/bus/scsi/devices/3:0:7:1/rescan

To scan all channels, targets and LUNs, try:

echo "- - -" > /sys/class/scsi_host/host3/scan

and to scan only one particular target, enter:

echo "0 7 -" > /sys/class/scsi_host/host3/scan

Although this design is not particularly user-friendly, it works fine for
automated tools, which can make use of the libsys library and the systool
utility.

 Multipath I/O

One of FC's strengths is it permits redundant paths between servers and RAID
arrays, which can allow failing FC devices to be removed and replaced without
server applications even noticing that anything happened. However, this is
possible only if the server has a robust implementation of multipath I/O.

One certainly cannot complain about a shortage of multipath I/O
implementations for the Linux 2.4 kernel. The reality is quite the opposite, as
there are implementations in the SCSI mid-layer, in device drivers, in the md
driver and in the LVM layer.

In fact, too many I/O implementations in 2.6 can make it difficult or even
impossible to attach different types of RAID arrays to the same server. The
Linux kernel needs a single multipath I/O implementation that accommodates
all multipath-capable devices. Ideally, such an implementation continuously
would monitor all possible paths and determine automatically when a failed
piece of FC equipment had been repaired. Hopefully, the ongoing work on
device-mapper (dm) multipath target will solve these problems.

 Support for LUNs

Some RAID arrays allow extremely large LUNs to be created from the
concatenation of many disks. The Linux 2.6 kernel includes a CONFIG_LBD
parameter that accommodates multiterabyte LUNs.

In order to run large databases and associated applications on Linux, large
numbers of LUNs are required. Theoretically, one could use a smaller number
of large LUNs, but there are a number of problems with this approach:

1. Many storage devices place limits on LUN size.
2. Disk-failure recovery takes longer on larger LUNs, making it more likely

that a second disk will fail before recovery completes. This secondary
failure would mean unrecoverable data loss.

3. Storage administration is much easier if most of the LUNs are of a fixed
size and thus interchangeable. Overly large LUNs waste storage.

4. Large LUNs can require longer backup windows, and the added downtime
may be more than users of mission-critical applications are willing to put
up with.

The size of the kernel's dev_t increased from 16 bits to 32 bits, which permits
i386 builds of the 2.6 kernel to support 4,096 LUNs, though at the time of this
writing, one additional patch still is waiting to move from James Bottomley's
tree into the main tree. Once this patch is integrated, 64-bit CPUs will be able to
support up to 32,768 LUNs, as should i386 kernels built with a 4G/4G split and/
or Maneesh Soni's sysfs/dcache patches. Of course, 64-bit x86 processors, such
as AMD64 and the 64-bit ia32e from Intel, should help put 32-bit limitations out
of their misery.

 Distributed Filesystems

Easy access to large RAID arrays from multiple servers over high-speed storage
area networks (SANs) makes distributed filesystems much more interesting and
useful. Perhaps not coincidentally, a number of open-source distributed
filesystem are under development, including Lustre, OpenGFS and the client
portion of IBM's SAN Filesystem. In addition, a number of proprietary
distributed filesystems are available, including SGI's CXFS and IBM's GPFS. All of
these distributed filesystems offer local filesystem semantics.

In contrast, older distributed filesystems, such as NFS, AFS and DFS, offer
restricted semantics in order to conserve network bandwidth. For example, if a
pair of AFS clients both write to the same file at the same time, the last client to
close the file wins—the other client's changes are lost. This difference is
illustrated in the following sequence of events:

1. Client A opens a file.
2. Client B opens the same file.
3. Client A writes all As to the first block of the file.
4. Client B writes all Bs to the first block of the file.
5. Client B writes all Bs to the second block of the file.
6. Client A writes all As to the second block of the file.
7. Client A closes the file.
8. Client B closes the file.

With local-filesystem semantics, the first block of the file contain all Bs and the
second block all As. With last-close semantics, both blocks contain all Bs.

This difference in semantics might surprise applications designed to run on
local filesystems, but it greatly reduces the amount of communication required
between the two clients. With AFS last-close semantics, the two clients need to
communicate only when opening and closing. With strict local semantics,
however, they may need to communicate on each write.

It turns out that a surprisingly large fraction of existing applications tolerate the
difference in semantics. As local networks become faster and cheaper,
however, there is less reason to stray from local filesystem semantics. After all,
a distributed filesystem offering the exact same semantics as a local filesystem
can run any application that runs on the local filesystem. Distributed
filesystems that stray from local filesystem semantics, on the other hand, may
or may not do so. So, unless you are distributing your filesystem across a wide-
area network, the extra bandwidth seems a small price to pay for full
compatibility.

The Linux 2.4 kernel was not entirely friendly to distributed filesystems. Among
other things, it lacked an API for invalidating pages from an mmap()ed file and
an efficient way of protecting processes from oom_kill(). It also lacked correct
handling for NFS lock requests made to two different servers exporting the
same distributed filesystem.

 Invalidating Pages

Suppose that two processes on the same system mmap() the same file. Each
sees a coherent view of the other's memory writes in real time. If a distributed
filesystem is to provide local semantics faithfully, it needs to combine
coherently the memory writes of processes mmap()ing the file from different
nodes. These processes cannot have write access simultaneously to the file's
pages, because there then would be no reasonable way to combine the
changes.

The usual solution to this problem is to make the nodes' MMUs do the dirty
work using so-called distributed shared memory. The idea is only one of the
nodes allows writes at any given time. Of course, this currently means that only
one node may have any sort of access to a given page of a given file at a time,
because a page can be promoted from read-only to writable without the
underlying filesystem having a say in the matter.

When some other node's process takes a page fault, say, at offset 0x1234
relative to the beginning of the file, it must send a message to the node that
currently has the writable copy. That node must remove the page from any
user processes that have it mmap()ed. In the 2.4 kernel, the distributed
filesystem must reach into the bowels of the VM system to accomplish this, but
the 2.6 kernel provides an API, which the second node may use as follows:

invalidate_mmap_range(inode->mapping, 0x1234, 0x4);

The contents of the page then may be shipped to the first node, which can map
it into the address space of the faulting process. Readers familiar with CPU
architecture should recognize the similarity of this step to cache-coherence
protocols. This process is quite slow, however, as data must be moved over
some sort of network in page-sized chunks. It also may need to be written to
disk along the way.

Challenges remaining in the 2.6 kernel include permitting processes on multiple
nodes to map efficiently a given page of a given file as read-only, which requires
that the filesystem be informed of write attempts to read-only mappings. In
addition, the 2.6 kernel also must permit the filesystem to determine efficiently
which pages have been ejected by the VM system. This allows the distributed
filesystem to do a better job of figuring out which pages to evict from memory,
as evicting pages no longer mapped by any user process is a reasonable
heuristic—if you efficiently can work out which pages those are.

 NFS Lock Requests

The current implementation of NFS lockd uses a per-server lock-state database.
This works quite well when exporting a local filesystem, because the locking
state is maintained in RAM. However, if NFS is used to export the same
distributed filesystem from two different nodes, we end up with the situation
shown in Figure 2. Both nodes, running independent copies of lockd, could
hand out the same lock to two different NFS clients. Needless to say, this sort of
thing could reduce your application's uptime.

Figure 2. One lock, two clients, big trouble.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7321f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7321f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7321f2.large.jpg

One straightforward way of fixing this is to have lockd acquire a lock against the
underlying filesystem, permitting the distributed filesystem to arbitrate
concurrent NFS lock requests correctly. However, lockd is single-threaded, so if
the distributed filesystem were to block while evaluating the request from
lockd, NFS locking would be stalled. And distributed filesystems plausibly might
block for extended periods of time while recovering from node failures,
retransmitting due to lost messages and so on.

A way to handle this is to use multithread lockd. Doing so adds complexity,
though, because the different threads of lockd must coordinate in order to
avoid handing out the same lock to two different clients at the same time. In
addition, there is the question of how many threads should be provided.

Nonetheless, patches exist for these two approaches, and they have seen some
use. Other possible approaches include using the 2.6 kernel's generic work
queues instead of threads or requiring the underlying filesystem to respond
immediately but permitting it to say “I don't know, but will tell you as soon as I
find out”. This latter approach would allow filesystems time to sort out their
locks while avoiding stalling lockd.

 Don't Kill the Garbage Collector

Some distributed filesystems use special threads whose job it is to free up
memory containing cached file state no longer in use, similar to the manner in
which bdflush writes out dirty blocks. Clearly, killing such a thread is somewhat
counterproductive, so such threads should be exempt from the out-of-memory
killer oom_kill().

The trick in the 2.6 kernel is to set the CAP_SYS_RAWIO and the
CAP_SYS_ADMIN capabilities by using the following:

cap_raise(current->cap_effective,
 CAP_SYS_ADMIN|CAP_SYS_RAWIO);

Here, current indicates the currently running thread. This causes oom_kill() to
avoid this thread, if it does choose it, to use SIGTERM rather than SIGKILL. The
thread may catch or ignore SIGTERM, in which case oom_kill() marks the thread
so as to refrain from killing it again.

 Future Trends

It appears that storage systems will continue to change. The fact that LAN gear
is much less expensive than SAN gear augurs well for iSCSI, which runs the SCSI
protocol over TCP. However, widespread use of iSCSI raises some security
issues, because failing to disable IP forwarding could let someone hack your
storage system. Some believe that serial ATA (SATA) is destined to replace SCSI

in much the same way that SCSI itself replaced proprietary disk-interface
protocols. Others believe that RAID arrays will be replaced by object stores or
object-store targets, and in fact there is an emerging standard for such devices.
Either way, interfacing to storage systems will continue to be challenging and
exciting.

 Acknowledgements

I owe thanks to the Linux community but especially to Daniel Phillips and Hugh
Dickins for most excellent discussions and to Mike Anderson and Badari
Pulavarty for their explanations of recent 2.6 kernel capabilities and their
review of this paper. I also am grateful to Bruce Allan and Trond Myklebust for
their thoughts on resolving the NFS lockd issue.

 Legal Statement

This work represents the view of the author and does not necessarily represent
the view of IBM.

Paul E. McKenney is a distinguished engineer at IBM and has worked on SMP
and NUMA algorithms for longer than he cares to admit. Prior to that, he
worked on packet-radio and Internet protocols, but long before the Internet
became popular. His hobbies include running and the usual house-wife-and-
kids habit.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

The Ultimate Cooking Box

Marcel Gagné

Issue #124, August 2004

Organize your recipes with or without a MySQL database server, whichever
pleases your palate.

It isn't that strange, mon ami. Every year at this time, we talk about the ultimate
Linux box, François. We try to outdo one another in terms of graphics, speed,
memory, disk space and so on. The ultimate, invariably, is also a question of the
latest and greatest. The trouble I have, François, is that as new as all this
hardware extravaganza is, it is all the same thing. Then it occurred to me that if
my Linux box could help out in the kitchen, that truly would be something new.

Non, François, you do not have to worry, your job is safe. Besides, this is exactly
the sort of thing that might help make your job easier. In fact, I would not be
surprised if many of our guests find that using Linux to help when it comes to
cooking is simply natural. Speaking of guests, I see they have arrived. Welcome,
mes amis, to Chez Marcel. Vite, François! Go to the cellar and bring back the
1997 Brunello di Montalcino, immédiatement!

While my faithful waiter fetches the wine, I should tell you about today's menu.
In honor of this issue's theme of the ultimate Linux box, I've located a few
programs to make your Linux box cook. I don't mean screaming performance,
mes amis, but cooking with food and wine.

Looking for a way to get my Linux box to help out in the kitchen led me to
Krecipes (see the on-line Resources section). Unai Garro, Jason Kivlighn and
Bosselut Cyril have been putting together a nice open-source package that
makes creating and maintaining your own list of favorite recipes a breeze.
Krecipes lets you create and edit your own recipes as well as import them from
popular exchange formats, including RecipeML, MasterCook, Meal-Master and
others. It saves its own recipes in KreML (Krecipes XML format). You also can

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

maintain categories, track calories (fiber, fat and so on), create shopping lists
based on selected meals and more.

Ah, François, you have returned. Please, pour for our guests.

Krecipes stores its recipes in a database, so you need to have either MySQL or
SQLite (see Resources) installed before compiling and using the software.
SQLite is a small program-embeddable database that requires somewhat less
overhead and administration than MySQL, but it's not as full-featured or
powerful. For an application such as this, users may find it to be an attractive
option. The beauty of SQLite is no database process needs to be running on the
system in order to take advantage of SQL database capabilities, storage and
access.

If you have both MySQL and SQLite on your system, support is compiled for
both at build time. Speaking of building, this is a classic case of the extract and
build five-step:

tar -xzvf krecipes_alpha_0.4.1.tar.gz
cd krecipes
./configure --prefix=/usr
make
su -c "make install"

During your first time with Krecipes (the program name is krecipes), a wizard
guides you through some basic setup processes, including a choice of database
in which to store the information. If you have compiled the program with both
MySQL and SQLite, you can choose either. Because we've already covered
many programs that use a MySQL back end in this restaurant, I thought it might
be nice to go with SQLite. I made that my choice and clicked Next.

Once you have made your selection, Krecipes offers to populate the program
with some sample recipes. Make sure you click on this check box before
continuing with the setup so you wind up with a few examples to help
familiarize yourself with the software.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7592f1.large.jpg

Figure 1. Marcel enters the details of his famous Spanish Omelette using Krecipes.

To create a new recipe, click File on the menubar and select New or simply click
the new recipe button in the top left-hand side of the icon bar. The recipe
dialog has three tabs. One is for the recipe basics—the name, the author, which
category it should be filed under (you can create new categories) and how
many people the dish serves. See Figure 1 for an example. The other two tabs
are for the ingredients list and the description. In all cases, you can save your
work at any time or return to it later for updates.

If you would rather take advantage of the many thousands of recipes available
on the Internet in Meal-Master and RecipeML format, it's easy to import them.
All this talk of food, mes amis, just reinforces the importance of a well-stocked
wine cellar.

Another great recipe manager you may want to investigate is Douglas Squirrel's
LargoRecipes. LargoRecipes (named after the author's dog) lets you manage
recipes, share them with friends (through Web pages), create shopping lists,
build meal plans and more. You also can import Meal-Master and RecipeML
format recipes. Have a look at Figure 2 for a sample of LargoRecipes in action.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7592f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7592f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7592f2.large.jpg

Figure 2. Dishing Up Some Huevos Rancheros with LargoRecipes

To install LargoRecipes, you need at least Java 1.4, which should tell you that no
compiling is involved in the installation. Download and save two files from the
LargoRecipes Web site (see Resources). The first is the largorecipes distribution;
I'll get to the second file shortly. At the time of this writing, version 0.9.2.1 was
available. To install the package, save the bundle to a directory of your choice—
I created a Largo directory in my home directory—and execute the following
command:

cd ~/Largo
java -jar largorecipes-0.9.2.1.jar

That also is the command you use to run it on subsequent uses. On your first
run, an installation dialog appears. All of the supporting data files and
directories are created from where you run the installation. One of those
directories is called demo. This is where you save the second file you download,
the LargoRecipes demo file. It also is available from the LargoRecipes Web site's
download page.

To activate the sample recipes, for this session only, click LargoRecipes on the
menubar and select Demonstration. If you would rather skip this and start
importing recipes, consider checking out the LargoRecipes RecipeML archive.
There are 10,000 recipes in zipped bundles available on the site; look for the
link on the main page.

To share your recipes with others, LargoRecipes provides a Web page export
function. Click Internet on the menubar and select Web Page, and a list of

https://secure2.linuxjournal.com/ljarchive/LJ/124/7592f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7592f2.large.jpg

available recipes appears in the right-hand window. Select the ones you want,
and then press Add to add them to the export list. When you have made all
your choices, choose a title for the page but don't click Go yet. You should see a
check box labeled Include XML Download. Make sure that is checked to provide
a link on each recipe's page so that visitors to your site can download RecipeML
format copies of the recipes. They then can import those into their favorite
recipe system.

For those of you who are curious, check out the Resources section for a link to
the RecipeML format specification. It's always good to know how these things
work, non? I've also provided a link to the Meal-Master Web site. There are
plenty of links there from which you can find a huge number of recipes ready
for import into your favorite package.

Mon Dieu, mes amis, closing time has arrived and all I have done is make you
more hungry. Perhaps François will be kind enough to refill our glasses a final
time. In the meantime, I shall bring out my famous baked double-butter brie
with spicy mixed-berry coulis. With all these tempting tastes loaded on our
Linux systems, appetizers certainly are in order. Until next time, mes amis, let
us all drink to one another's health. A votre santé Bon appétit!

Resources for this article: /article/7608.

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of Moving to Linux: Kiss the Blue Screen of Death Goodbye! (ISBN
0-321-15998-5) from Addison Wesley. His first book is the highly acclaimed
Linux System Administration: A User's Guide (ISBN 0-201-71934-7). In real life,
he is president of Salmar Consulting, Inc., a systems integration and network
consulting firm.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7608.html
mailto:mggagne@salmar.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux for Suits

Missing Pieces

Doc Searls

Issue #124, August 2004

Would you take project advice from a bozo? Doc covers a new opportunity for
open source in business.

Robert L. “r0ml” Lefkowitz (that's a zero, not an o...you figure it out) is a tall,
smart, charismatic and good-humored man with a shaved head and a red
clown nose in his pocket that he sometimes wears to explain, visually, that he's
“just a bozo”. Except for the nose, he's not. Lefkowitz is an IT veteran who
stepped out of the frying pan of Wall Street and into the fire of the telco
business, specifically from Merrill Lynch to his current job as Chief Technical
Architect and VP Information Technology for AT&T Wireless. He calls himself
geek-in-chief.

r0ml is a longtime advocate of open source. But he's also the rare open-source
advocate who tells you all the ways open source either is inadequate as a
development methodology or is lacking the tools and solutions large IT
organizations require. He makes it his job both to prod the Open Source
community to produce the missing goods and to find new goods for possible
adoption by his company. He likes when his own engineers already have found
them.

During the July 2003 O'Reilly Open Source Convention, Lefkowitz gave a talk
titled “Six Missing Open-Source Projects”. It was as much a primer on The Real
World of IT as a call to action for the open-source programmers who packed
the room. Relationship Management was one of his projects. “Relationships are
more important to most companies than code”, he said, which is why they
spend more money on marketing than on programming. He said there is plenty
of CRM—customer resource management—software out there for big
companies, but none yet from the open-source world. There also is none for
following relationships between IT departments and development

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

communities. There were so many questions such a system could answer.
Which industries have the highest patch-submission to running-copies ratio?
What percentage of bug reports come from financial services firms? How about
from other industries? Who's working on what, anyway? And for how long?

He also called for help with asset management, distributed cron, change
management, messaging, single sign-on and source termination. He said we
should work to create a definitive literature for problem domains to make it
easier to integrate open-source systems. He called for open-source developers
to start thinking about operations—accounting and financial systems, help desk
automation, customer relations and marketing. “All the stuff businesses care
about.”

During the Open Source Business Conference in San Francisco, March 2004,
r0ml gave a talk titled “(More) Missing Open-Source Projects”. In it he proposed
four criteria that must be met for open-source projects to take root:

• Everybody (for some definition of everybody) needs it or can use it.
• Those who use it (everybody, by definition above) want to improve it (for

some definition of improve).
• Significant business value associated with the use of the software does

not reside in the software itself.
• It's cool.

He opened his talk by holding up two CDs and explaining they were what was
left of a telecommunications billing system called Flexcell, which was orphaned
when AT&T Wireless ate Vanguard Wireless, the North Carolina company that
wrote it. “How cool would it be if there were an open-source company in North
Carolina?” r0ml quipped, tongue planted deeply in his cheek. “That would be
fortuitous. Particularly if they were interested in enterprise systems.”

He went on to explain that telecommunications billing systems were terrific
ways to show off micropayment chops. Phone billing is personalized, goes
down to the second and keeps track of many variables all at once. “Very kewl”,
he said. Then, the pitch:

So we are interested in testing the hypothesis. How
will you take something this cool and turn it into an
open-source project. Would anybody actually be
interested in working on that? We won't invest a heap
of money. But if other people are willing to invest
some time or energy or money, then certainly that
would encourage us to work with them a little bit.

So the offer I'm making, if anybody is interested, is
doing the world's largest and coolest micropayment
system, I've got the source code. (And) I do have

authorization to look into how to open source such a
thing. I'll be happy to take any licenses or whatnot. It's
all open for discussion.

Then he pitched CRM: “Since I was so successful at convincing you that billing
systems are really cool, I'd like to give it to you that CRM systems are really
cool.” Next, he detailed a peer-to-peer CRM system he called Carester. He went
on to pitch projects in visual programming, business process integration (BPI),
messaging and business intelligence (data warehousing). “Other than
'kewlness', is there any other reason why open source doesn't tackle billing,
CRM, BPI and business intelligence?” he asked. Is it scale? Performance? Lack of
a market? “Maybe this just isn't a value network that open source can ensconce
itself in. I don't know. I'm just an open-source guy and a bozo in IT.” Then he
brought out the nose.

It was a downbeat talk—kind of a Swiss cheese treat where all they serve is the
holes. Later in a telephone interview, I asked r0ml to name some examples of
cases where open source was succeeding, even in the categories he had
mentioned. He said:

Take the data warehouse space. You're dealing with
expensive, specialized hardware. Teradata NCR. Old
style hardware-software bundles that do large
specialized databases. Now they have a competitor,
Netezza (netezza.com). When a query comes into a
Netezza box, it hits a quad-CPU that's running Red Hat
Linux and PostgreSQL. Since PostgresSQL has a BSD
license, they hacked it to do all this funky
parallelization, so they can run it on their platform,
which is kind of a blade thing with these souped-up
disks. The executive, if you will, that does all the
dispatching to all the subnodes and collects all the
responses and sends them back to make these
special-purpose queries, is Linux-based. If I buy them,
I'm buying special-purpose hardware that's able to
come into the market to undercut the established
players. And they can do that because they build their
stuff up from open-source basics like Linux and
PostgreSQL, which they can take and adapt to their
needs. They're doing DIY: Do-It-Yourself. They're being
smart and resourceful. I like that.

The DIY-IT environment, r0ml says, is a complicated place. And, it will never
submit to simplistic DIY efforts, least of all those that limit their interest to open
source:

Most environments are mixed. In some mixed
environments, especially those using large enterprise-
class software, you have some projects that probably
never will be handled by open source and probably
never come from anybody other than a big
vendor....Here at AT&T Wireless, none of the large

http://netezza.com

enterprise-class software we're using is available in
open source, outside of databases. Our billing system
uses Siebel on Sun. It also runs on HP-UX, AIX or
Windows. But not Linux. Our billing system runs on
something other than Linux. We also use Vitria
business ware, which just added Linux support.

On the other hand, he said, “There are two classes of vendors in this space
now: those that say they'll deliver products on Linux any day now and those
that are thinking about whether there's a market. Meanwhile, there's a market.”
In other words, it's catch-up time.

Meanwhile, your bread-and-butter enterprise systems are going to be provided
by vendors, not by customers. Sometimes a vendor drives things. For example,
The Wall Street Linux Roundtable was sponsored by Intel. There were
representatives of various vendors including Reuters, which does a lot of
business on Wall Street. “When you have representatives from Deutche Bank,
Morgan Stanley, Merrill Lynch, Goldman Sachs, all sitting in the same room
saying, 'We want stuff on Linux,' the vendors are going to go back to the office
and say 'We underestimated the size of the market.'”

Back at the Open Source Business Conference, I led a panel on DIY-IT that
included r0ml, Kevin Foreman of RealNetworks, Win Coekaerts of Oracle and
Ted Shelton of CallTrex. Everybody made interesting points, and each panelist
said something important about what each kind of company contributes to the
market ecosystem. Wim Coekaerts, for example, made this point about testing:

It's not just about contributing source code. It's about
having the resources in hardware. Big iron hardware
that you run test suites on and you do stuff with. There
is the communication that you have internally. That's
how a big part of what we contribute is testing. We
have to do that for our customers. They expect a
product to be reasonably well tested and to meet
minimal criteria. Also, if you look at other UNIX
operating systems or Windows, hardware and
software come from the same company—Solaris on
SPARC, AIX on PowerPC and so on. The companies
themselves that built those systems have the
hardware to do the testing. They've had tons of people
dedicated to working with Oracle to run the database
on their platforms. The testing involves a very small
community. Now if you look at Linux, none of the
distribution developers can afford the big iron
hardware. But what we're doing now is working with
the distributions to get the hardware vendors to
participate in the testing. So we're trying to set up this
virtual Linux test environment where...we'll deal with
Dell, HP and other companies to say, “Here is a subset
of tests you should run at the vendor side, in your
early cycles. So that when they ship a hardware
product, it has been pre-tested. In the past they didn't

do that. You have the hardware specification list, you
get a CD and good luck.”

Ted Shelton offered an interesting answer to r0ml's question about what it
would take for open source to appear in some of these large-scale enterprise
categories:

I've heard that things like CRM and ERP are not going
to be addressed by open source. If you only look at
open source as a very broad-based group of otherwise
disconnected people coming together to do
something, that's probably true. But sometimes you
get a company that builds a big solution in a vertical
market and decides to take it out in the open-source
market, because they realize their profits are in selling
hardware, not software. And they've now developed a
big community that provides bug fixes and
applications running on top of it. That's Asterisk
(www.asterisk.org, the open-source Linux PBX).

Then Ted turned to Wim, and said, “So, when Oracle gets done buying
PeopleSoft, why not open source all their stuff?” Ted did it for laughs, but you
could see some heads in the audience nodding along.

Doc Searls (info@linuxjournal.com) is senior editor of Linux Journal. His
monthly column is Linux for Suits and his biweekly newsletter is SuitWatch. He
also presides over Doc Searls' IT Garage (garage.docsearls.com), a sister site to
Linux Journal on the Web.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.asterisk.org
mailto:info@linuxjournal.com
http://garage.docsearls.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 EOF

Open Source Is for Pigs

Evan Leibovitch

Issue #124, August 2004

While the US tries to sandbag a UN conference on information technology,
international open-source groups are making connections.

Do a search these days on the word “farm” on your favourite database of open-
source software applications. You'll find that the result of your quest turns up,
at best, a handful of projects related to server farms. This is fine for those of
you who like to cultivate a roomful of servers. But what about conventional
farms—the ones that are used to raise animals and grow crops? Without these
kinds of real-world applications, open source is having a hard time realizing its
potential within the developing world.

One would imagine that some of the greatest benefits from using open source
would be realized in the world's poorest economies. The low cost, the ethos of
sharing and community and building upon the work of others, make open-
source methodologies perfectly suited to environments where the practice of
self-help is not an option.

Unfortunately, a number of factors having nothing to do with logic are starting
to cause new impediments to open-source growth in areas where it should be
most embraced. Having failed to blunt the advance of open source through
attacks on its quality, innovation, performance or support, opponents have
resorted to the only weapon they have left (in abundance)—cash. Proprietary
software vendors have been opening their chequebooks to developing
countries and development agencies, in an attempt to blunt the adoption of
open source that would occur in a truly neutral environment.

In February 2004, FOSSFA, the main African open-source group, issued a clarion
call warning to governments of the long-term limitations of choice that could be
associated with some of these donations. Even the $1 billion in gifts promised

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

by Microsoft alone certainly would come back to the company many-fold if it
could maintain long-term dependence on its wares.

Meanwhile at the United Nations-sponsored World Summit on the Information
Society (WSIS) conference in December 2003, original language that supported
the use of open-source software systematically was taken out of ongoing
drafts, until the final version merely recognized the existence of different
software models. Although the negotiations that led to this conclusion were
done behind closed doors, most sources suggested that the main arm-twisters
against support of open source were the US delegation and the International
Chamber of Commerce.

So how does the open-source world fight this blatant use of handouts and
secret deals to maintain dependence? In this writer's opinion, the answer lies
amongst the pigs and cows and vegetables mentioned at the beginning of this
piece. Without the bankroll of open source's opponents, the community is
fighting back using a tactic that no money can buy, with benefits right down on
the farm.

The energy and enthusiasm of the community can—and must—go beyond
commodity software, such as operating systems and utilities, and into job-
specific applications that will take open source from the university lab to the
village. Providing open-source systems and graphics software is of no value to
someone who can't use the technology to sell more grain or fabric, or operate a
school or hospital. Offering this kind of software allows for a turnkey open-
source solution that can replace an entire proprietary system, not merely small
pieces of it.

Think of a foundation with a structure similar to that of the Open Source
Development Labs but creating software for dairy farms (as an example)
instead of the kernel. Programmers get paid, costs of development are far
below the cost of importing proprietary solutions, and the local community
maintains a stake in both process and outcome. The idea of such a model was
well received at the Idlelo conference earlier this year in Capetown, and some
African governments already have expressed interest in supporting such
foundations.

At the WSIS conference as well, community triumphed over money. While the
politicians and policy makers were watering down the language of official
documents, open-source advocates still were finding receptive ears amongst
the delegates. The Linux Professional Institute (LPI) booth at the adjoining
ICT-4D tradeshow was one of the busiest amongst hundreds of participants,
drawing visitors from hours before the show started to hours after it ended
each day. The LPI booth had 22 staff, coming from every continent, and

included three people from the Geneva Linux user groups. This was a perfect
way to demonstrate the strength of a movement that was global but has roots
everywhere. The message taken away—as well as the 5,000 Debian and SuSE
CDs given out—offered a bright counterpoint to the dreary and generally
pointless policy work coming from the conference.

It is here—in our community's strength of local grassroots, common ownership
and self-reliance—that open-source technology makes the leap from being
simply an alternative to a compelling and undeniable option. And, that
particular strength can't be bought or sold, at any price.

Evan Leibovitch is President and cofounder of the Linux Professional Institute,
creators of the most-popular Linux skills certification program worldwide. He
has been involved with the community since 1995 and has written extensively
about business and professionalism issues related to open source. He's based
in Toronto, Canada.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Editor

Money Talks

Don Marti

Issue #124, August 2004

And it says, “Hooray for Linux servers!” It's almost time for the billion-dollar-
quarter party.

At the end of May, IDC released a thorough report on server sales in the first
quarter of 2004. Linux servers came in at more than $900 million for the
quarter, up 56.9% from last year.

At that growth rate, the best of any server OS, we're soon due for the first
billion-dollar quarter for the Linux server business. So let's plan to celebrate it.

Even if servers aren't your bag, it's important to recognize milestones in this
mature, successful area of the Linux business. The smart choices that made for
Linux server success—including a commitment to GPL-licensed device drivers
instead of problematic binary-only ones—will be a recipe for success in other
fields too. Generic and hackable beats restrictive and specialized.

On the embedded hardware side, there's more good news—you can get a
generic, hackable platform at your favorite computer store. Get a Linksys
wireless access point with Linux onboard, and you can run your custom
firewall, traffic control or any application you want on a platform that's well
under a hundred dollars.

“Linux on Linksys Wi-Fi Routers” by James Ewing (page 50) gets you started in
embedded Linux with hardware that fits your budget and beginner projects
that get some real work done.

We've quietly made a change in our Resources sections at the ends of articles.
Instead of a list of links, we point you at one jump page per article. Not only
does that save you typing some long URLs, it also saves us some space in print,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

and now we can check our logs to find out which articles got you interested
enough to take the next step.

So, are you looking to reorganize your servers for easier management with
serial consoles (page 66)? Are you planning to develop Linux support for a new
USB device, and want to follow along step-by-step as the Linux USB master
does it (page 36)? Or, are you planning to speed up your database application
with Memcached (page 72)? We want to know.

So, congratulations to all the great people doing support, engineering, sales
and everything else in the Linux server business. And whatever you use Linux
for, you'll find something in this issue.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Readers sound off.

 We'll Believe It When We See It

The May 2004 issue of Linux Journal arrived yesterday, and I've completed
reading the second part of Meng Weng Wong's SPF articles. It's obvious that a
lot of work has gone into the authentication concept. Unfortunately, it's actually
not required merely to be spam-free. All the effort for both you and others
simply penalizes the good guys. Although authentication is a positive thing, it
still solves the wrong problem, as Wong's article admits: “Remember,
spammers can publish SPF too.” That's a lot of effort only to end up with that
caveat.

More than two years ago, the company I work for started development of EVS
Mail (the E-mail Validation Service) for a specific client who had requested it.
Within months we were spam-free—we still are today. We don't have to care
about how the rest of the Internet tries to cooperate to get rid of spam—our
techniques work with how SMTP works, and that's the only cooperation we
have to consider. Although SPF and others may be more effective than RBLs, I
don't think they will be more successful. Our client never did sign on—go figure.

Fundamental pieces of EVS Mail are the automated white listing and challenge/
response (authentication, or what we call validation). However, they are
relatively minor items and do not suffer from the problems normally associated
with those types of systems. This is due to ongoing development, of course. At
this point, more than two years later, we have eliminated 100% of all baggage
messages—they are completely unnecessary. Just today I put the finishing
touches on a new process that will eliminate the generation of all explicit
challenge messages (yet still accomplish the challenge function). For anyone
who is the victim of a joe-job, we will now be able to guarantee that they will
not get a challenge message from our servers. And, interestingly, our clients do
not receive joe-job-related messages, so are not victims themselves.

The end result is that we are at the point where we can reduce bandwidth
usage to less than what is used by either normal (unprotected) SMTP or by

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

other spam-control products and services. We also have extremely low
resource usage and other benefits.

Why have you never heard of EVS Mail? Marketing, of course, which is directly
related to money. We do have a superior service, but we are a small shop with
a shoestring budget. We are seeking investment and will be able to produce a
black box gateway running EVS Mail within three months of getting it.

—
Roger Walker

 Reader Wheels

I just wanted to say how much I love your magazine. The articles are truly
inspiring. And as a die-hard Linux fan, I wanted to show my devotion to Linux
and open source. When temperatures in New York are at record lows, you need
all the reliability you can get. I am planning to design and build various systems
in this vehicle that are powered by the penguin.

—
Dave

 Boo, Politics

Do you really think it wise to use as a demonstration in a magazine about Linux
a personal Web site containing the author's personal views on such sensitive
issues? [See “COREBlog”, LJ, April 2004.] I understand that by their very nature
Weblogs are linked to opinion and comment, but there is plenty of scope for

opinion and comment within the realm of technology. Readers may disagree
with you on your preference for Emacs over vi, but as far as I'm aware, nobody
has died over this long-running dispute. In the future, please keep such
personal Web sites out of articles about technology, or I may reach the opinion
that your magazine has some other motive than just Linux evangelism.

—
Geraint Williams

Real Web sites sometimes have information that people feel strongly about.
We'd rather keep our examples realistic than give new readers the impression
that Linux users spend all their time bickering over Emacs vs. vi. —Ed.

 Yay, Politics

I appreciated Doc Searls' article in the June 2004 issue of Linux Journal entitled
“Hacking Democracy”. I also see a link between freedom, democracy and
technology. I very much hope all our members of democracy can see that link
and maintain it. It is definitely being attacked by those who hold greed as their
creed as they march on—even attempting to redefine the word innovation.

—
Valden Longhurst

 Hooray for Meng!

Meng Weng Wong is a terrific writer. I just finished his current article on SPF [LJ,
May 2004]. He has a way of taking complicated, technical and potentially dry
material and expressing it in a clear, conversational way. As far as I am
concerned, he's the benchmark.

—
Jeff Jourard

Check our Web site for a follow-up from Meng on the new generation of SPF. —
Ed.

 More Success Stories Please

I would like to say thank you for an excellent magazine. I always look forward to
my LJ coming in the mail. I typically read the entire magazine within the first
couple of days. I recently read an article about Weather.com switching from
Solaris/Websphere to Linux/Tomcat for delivering its Web information. The
article also said they may be moving from Oracle to MySQL for their database. I

would like to see more articles or sidebars about companies that switched from
proprietary to open-source platforms and the successes and failures they had. I
liked your recent article about HEC in Canada [May 2004] and their new e-mail
system. I especially liked the amount of detail given about the setup. I work as a
Windows Network administrator, and it is nice to see the Linux alternatives that
are available. I realize companies tend to be a little secretive about their
networks, so it may not be possible to provide the information I am seeking.

—
Stephen Haywood

 Another SPF User

I just wanted to thank you for the excellent articles on SPF published in LJ [see
Meng Weng Wong's articles in the April and May 2004 issues]. Thanks to your
wizard (spf.pobox.com/wizard.html), I could enhance and verify my setup in a
couple of minutes. Excellent work!

—
Carlos Vidal

 Processor Count Correction

The June 2004 issue of LJ has a minor error on page 12, LJ Index, #17. The
number of Opterons to be used in the Dawning 4000A supercomputer is “More
than 2,000”, not 800.

—
Charles N. Burns

 Photo of the Month: /bin/cat

I ran across this old photo (SuSE 7.2) and thought you might like it for your
magazine's Letters section. As you can see, my cats enjoy a new distribution of
Linux just as much as I do—or at least the box!

http://spf.pobox.com/wizard.html

—
Jeffrey K. Brown

Photo of the Month gets you a one-year extension to your subscription. Photos
to info@linuxjournal.com. —Ed.

 Little Box Puts Old Hardware on the Net

One of Linux's greatest assets is its ability to add value to legacy technology
investments by connecting and interfacing with old equipment or software.
Recently, I found a solution to add networking capabilities to an old telephone
system. After seeing an advertisement for Cyclades in a previous issue of Linux
Journal, I purchased the Linux-based Cyclades TS-100. Much like the way Linux
can be used as an e-mail gateway to enhance a legacy mail server, I was able to
add networking services to my old phone system.

—
nick marsh

 Penguin Love

LJ is about the only computer magazine I pay for—LOVE IT! I've been a longtime
fan of Linux, and now my kids are starting to use it. They love the Linux penguin
and call him Pengi. We took a few snapshots a while back with one of them.

—
Wade Hampton

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

• diff -u: What's New in Kernel Development
• Linux Audio Conference 2004
• LJ Index—August 2004
• Who New? Qunu
• Linux 2.6-Based Box Set: SuSE 9.1 Professional
• They Said It

diff -u: What's New in Kernel Development

Zack Brown

Issue #124, August 2004

For more than a year, Terence Ripperda has been thinking about adding Page

Attribute Table (PAT) support to Linux. Back in mid-2003, the issue did not seem
so important to him, because only the AGP aperture and framebuffer really
would benefit. With PCI Express systems coming out, however, the old
workarounds are too slow. PCI Express lacks AGP's central aperture that can be
marked WC (write-combined) in certain cases. Instead, individual memory
pages must be marked as WC separately in the page tables. This cannot be
done efficiently using the old ways, but by adding PAT support, a high level of
efficiency still can be attained. Terence has been working closely with Andi

Kleen to get something ready for inclusion in the kernel. Other folks, such as
Andy Whitcroft, also have been looking into adding PAT support; so, one way or
another, it seems that this enhancement will go through.

Maneesh Soni, acting on a tip from Alexander Viro, has taken on an annoying
sysfs bug. Apparently, symbolic links in sysfs have been following the target
that existed at the time of the link's creation no matter what, even when the
intended target changes during use. A patch posted by Maneesh causes the
target to be recalculated every time the link is read. Maintaining a consistent
and proper sysfs interface is crucial to providing a clean global interface into
the kernel. The procfs mishmash is one of the main reasons sysfs was created
in the first place.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Carl-Daniel Hailfinger secretly has been implementing a successor for ATA RAID
in 2.6, called raiddetect, and finally unveiled his work for comment in April
2004. Raiddetect is intended to identify vendor software RAID superblocks,
verify their validity, group them by vendor and set them up for use. Although
Carl-Daniel's work admittedly could have been done as an extension of Wilfried

Weissmann's EVMS plugin, Carl-Daniel opted for the easier method of starting
from scratch—though he affirms that his work could be incorporated into EVMS
even now if folks preferred that. So far, there doesn't seem to be much dissent,
and people like Jeff Garzik are filled with praise for Carl-Daniel's work.

Marcelo Tosatti has decided to merge Serial ATA (SATA) support into the 2.4
tree—probably one of the last big features to go into 2.4. Marcelo says the
reason for this is that a lot of new computer systems are shipping with SATA-
only disks, and until 2.6 becomes fully stable it makes the best sense for 2.4 to
be able to run on these new systems. The decision met with some criticism,
most notably the counter-contention that the 2.6 tree is plenty stable and
specifically includes the same security fixes that recently went into 2.4.
Regardless, it seems that there is at least some good reason for including SATA
support in 2.4, and Marcelo apparently fully intends to do so.

Herbert Xu has written some code to allow Software Suspend to be compiled as
a module, but with all the hubbub over whether loadable modules should be
unloadable at all, the question of whether a given feature should be compilable
as a module is becoming less critical. Some developers, including Alan Cox,
have been leaving modularity support out of their driver work, preferring to get
the basic behavior correct and worry about less important modularity features
later. Software Suspend is apparently one of these as well, and folks like Pavel

Machek and Nigel Cunningham have expressed their doubts that a modular
Software Suspend is more valuable than the nonmodular version. The whole
question of modularity seems up in the air in the 2.6 series, because the ability
to load and unload modules always has been dear to the hearts of many users,
and its disappearance has been more for the convenience of developers than
for users. If a clear solution to the problem of how to unload modules properly
is found, it is likely that 2.7 would see the reappearance of that feature.

Linux Audio Conference 2004

Dave Phillips

Issue #124, August 2004

From April 29 through May 2, 2004, the Center for Arts and Media Technology
(ZKM) in Karlsruhe, Germany, hosted the second International Linux Audio
Conference. Developers from around the world presented open-source

software for hard-disk recording, software sound synthesis, music typesetting,
digital audio signal processing and many other sound and music-related areas.
Several concerts and a sound installation demonstrated how this software can
be used for composition and production. Linux-based music and sound
production hardware, the Lionstracs Mediastation and the Hartmann Neuron,
also made an appearance. Visitors were able to set up their own computer-
based Linux audio systems with the assistance of experts from the AGNULA/
Demudi and Planet CCRMA distributions.

The conference showed considerable growth over last year's successful event.
More than 30 topic presentations took place, and many extra sessions were
held to accommodate requests for more information about particular topics.
All presentations were given in English and were comprehensible and engaging,
a testament to the linguistic abilities of the presenters, many of whom were not
native English speakers. Highlight topics included Paul Davis' demonstration of
recent advances in his Ardour digital audio workstation project, Steve Harris'
exposition of the JAMin audio mastering suite, Fons Adriaensen's demo of his
Aeolus pipe-organ emulator and Stefan Kersten's introduction to his work with
the SuperCollider3 sound synthesis environment.

Other memorable presentations included Orm Finnendahl's explanation of his
use of common UNIX tools such as sed and awk in his compositions, Ivica Ico
Bukvic's thoughts on getting Linux into school music curricula and Dave
Topper's report on his GAIA, a graphic front end for sound synthesis languages.

With four concerts, a dance, ongoing hardware demonstrations and various
workshops demonstrating the use of Linux audio software, there was ample
opportunity to hear how Linux audio software has evolved. Huge kudos to
Frank Neumann, Matthias Nagorni and Goetz Dipper for keeping everything
running smoothly. Vast thanks also to SuSE and ZKM for their support. See
linux-sound.org for links to software, recordings and a conference program.
Next year's conference already is scheduled for ZKM again.

LJ Index—August 2004

• 1. Thousands of PCs covered by a study of possible conversion to desktop
Linux in Paris: 17

• 2. Thousands of Linux desktops planned for an Extremadura study in
Spain: 300

• 3. Number of Linux seats at Modena in Italy: 750
• 4. Number of Linux seats at Brescia in Italy: 250
• 5. Number of Linux seats at Robur in Italy: 190

http://linux-sound.org

• 6. Minimum number of factors at which Google looks on a Web page to
maximize accurate results: 100

• 7. Minimum billions of nodes in Google's matrix computation: 3
• 8. Minimum billions of edges in Google's matrix computation: 30
• 9. Millions of blogs watched by Technorati: 2.35
• 10. Millions of links tracked by Technorati: 304.73
• 11. Number of employees working for California Digital: 55
• 12. Number of four-processor Itanium 2 servers in the Linux-based

Thunder supercomputer built by California Digital for Lawrence Livermore
National Laboratory: 1,024

• 13. Trillions of operations per second Thunder can perform: 19.94
• 14. Position Thunder would occupy on the Top 500 list of leading

supercomputers, if it had made the deadline for the latest list: 2
• 15. Maximum number of wireless, solar-powered parking payment

stations running embedded Linux being rolled out in Montréal: 800
• 16. Number of parking meters each station will replace: 12
• 17. Minimum percentage by which Linux TCO (total cost of ownership) can

be driven down: 10
• 18. Maximum percentage by which Linux TCO can be driven down: 40
• 19. Millions of results for a Google “Linux” search: 117
• 20. Millions of results for a Google “Windows” search: 122

• 1: Microcost, at Desktop Linux Summit
• 2, 3–5: David Orban, Questar.it
• 6–8: Nelson Minar, Google
• 9, 10: Technorati, May 13, 2004
• 11–14: CNet
• 15, 16: LinuxDevices
• 17, 18: Meta Group
• 19, 20: Google

Who New? Qunu

Doc Searls

Issue #124, August 2004

I always know when I get an e-mail from Murray Gray, because he writes to me
from the future. He's in Australia, near the leading edge of tomorrow. I'm in
California, which is yesterday, relatively speaking. Murray's subject, however is

instantaneous. He's into IM (instant messaging). And, here's what he's doing
about it, with a new project called Qunu (www.qunu.com):

Let's say you're stuck in GIMP with a layer problem or
have issues installing a particular printer driver. What
are the chances of getting instant support from
someone who knows their stuff and actually wants to
help? Pretty low. You could ask a buddy on your IM list,
visit countless sites, forums or knowledge bases on the
Net, or even go to the manufacturer's Web site. You
may eventually find what you are looking for, but how
long can it take sometimes to achieve resolution?

Now, let's imagine an open IM system that allows you
to connect immediately with the very person you need
to talk to, who's on-line when you are, and who's
passionate and knowledgeable in the area you're
having problems. Qunu makes this possible though an
innovative cross-platform SDK that integrates with any
software application as well as a fully fledged
standalone application.

In short, it's community helping community. Anyone
can download the software and ask for help, and
likewise, anyone can provide help. Experts can receive
direct requests for help or dive into the pool of
requests and help with issues in which they're
knowledgeable.

Software publishers and IT companies now have an
incredible opportunity to allow their dedicated,
passionate users to evangelize on their behalf, and an
even greater opportunity to connect with users and
solve problems before they end up as PR nightmares.

Qunu traces back to an idea by Joseph E. Trent on the (now defunct) BeNews
forum in January 2000. The idea piqued the interest of Helmar Rudolph
(formerly of Opera Software and Sonork) and Murray, who joint-financed
development by Justin Kirby of openaether.org using his in-house toolkit for
XMPP/Jabber development.

Qunu is based on Jabber's XMPP (eXtensible Message and Presence Protocol)
and Mozilla. Here's Murray's technical case:

The core portability layer of Qunu is a thin wrapper
around the Apache Portable Runtime (APR), which has
been released under the APL in the spirit of the
libraries it's directly built upon. The Jabber protocol
then uses the APR wrapper for threads and
networking portability. The XML parsing library that is
used is the Xerces-c XML parser, whose maturity and
feature set are truly astounding.

http://www.qunu.com

Qunu is both a cross-platform SDK framework and
standalone application, making it suitable for any type
of implementation environment, software or topic
area. For reasons of brevity, we have glossed over the
details of setting up Jabber streams, creating XUL
windows and handling events, but suffice it to say, the
Mozilla application framework and Jabber protocols
are complex and elegant, and Qunu has leveraged this
into a useful and extensible framework.

Murray invites readers to download the code, play with it and contribute
improvements back to the new community.

Linux 2.6-Based Box Set: SuSE 9.1 Professional

Don Marti

Issue #124, August 2004

If you've been reading about the 2.6 kernel in Linux Journal but waiting until a
distribution integrates it nicely before you take the plunge, have a look at SuSE
9.1 Professional.

The install is nothing special, which is a good thing considering the current
standard for high-end Linux distributions. A great feature is the check for any
updated packages from the Net before letting you out on your own. If a security
problem comes up, new SuSE 9.1 installs from CD will get the fix as part of the
normal install.

KDE 3.2, the default desktop environment, is slick, with features including easy
CD burning, a file manager that lets you drag and drop files anywhere you're
allowed to sftp to and great GNU Privacy Guard integration in KMail.

The hard part about doing a Linux distribution, however, is hardware support,
and this is where SuSE 9.1 really stands out. SaX, SuSE's X configuration tool, set
up a multihead display and a Wacom tablet with point-and-click ease—no
configuration or documentation reading required. USB printers and storage
devices on our test system also simply work.

Although the price is higher than a lot of distributions, the box set includes
good printed user and administrator guides, along with install support. We
recommend this distribution for power users of other OSes who are trying
Linux for the first time.

SuSE has a good record for laptop support, too, so watch for more on SuSE 9.1
from Doc Searls, who is running this distribution on his IBM ThinkPad.

They Said It

Just as in the 1990s the COTS sector caught up with the military sector in
applications of cryptography, this decade will see the self-same overtaking but
this time of traffic analysis. You do not need to examine content if you can
deploy enough sensors and make sense of their findings.

—Dan Geer, on the Politech mailing list

Brazil hosted the recent Fourth International Forum on Free Software, held in
the World Social Forum's stronghold of Porto Alegre. There, jazzy pop star
Gilberto Gil, now Brazil's minister of culture, promised to “tropicalize
digitalization”, presumably a reference to bridging the developed and
developing worlds. If Extremadura is the harbinger, those tropicalized digits will
be globally connected, fiercely patriotic, and free as sunshine.

—Bruce Sterling in Wired

Many on Jack Valenti's side of the divide treasure their creative freedom and
fight like dogs against any who would block it. They would never dream of
permitting a system in which every film had to be approved by the state, but
they are advocating a system in which every program has to be approved by
the state, because a lot of them think that all programs come either from
faceless corporations like Microsoft or from criminal vandals.

We software creators need to insist that creative applies to us.

—Joe Buck, in a comment on lessig.org

Nat [Friedman] used to say “If you write a thousand lines of code, you are
violating someone's patent today.”

The picture is not pretty for anyone in the software industry.

But this is similar to what happens to biology students: in their first four
semesters as they learn about all the dangers, infections, vectors for infections
and bacteria, they stop eating everything, they start washing their hands with
special products, they double clean their utensils, they wash their fruits ten
times a day.

Two years later they are eating food with their bare hands again.

—Miguel de Icaza, primates.ximian.com/~miguel

Archive Index Issue Table of Contents

http://primates.ximian.com/~miguel
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

On the Web

Tune-up for IT at Doc's Garage

Heather Mead

Issue #124, August 2004

Information technology power is flowing out from Linux-using smart
companies. Join the conversation.

Senior Editor Doc Searls has spent a good portion of the last year or so talking
to IT guys inside some big-name companies about how and where they are
using Linux and open source. More than a single story, Doc's tapped in to a
revolution in the way IT departments work. He's dubbed the revolution DIY-IT.
Response to his reports has been overwhelming, so we've launched a new SSC
Web site devoted to the DIY-IT movement. Here's Doc describing in his own
words what this new site is:

Early last year, Don Marti assigned me to write a long
piece about “how Linux helps make smart companies
smarter”. What I found was there's a lot more going on
out there than anybody's talking about in the
mainstream press, or pretty much anywhere. It was
nothing less than a vast reform movement inside IT
(information technology) organizations everywhere—
one in which the demand side was starting to supply
itself. Much of this has been with Linux and other
open-source tools and applications, but the
phenomenon goes far beyond that. It's a cultural as
well as a technical revolution, yet it's also very
practical. It's about getting stuff done.

So, we decided to start a site on the Web where people
involved in what we call DIY-IT—Do It Yourself IT—
could talk about their work and report on trends
happening in the field. We call it Doc Searls' IT Garage
(garage.docsearls.com) or just IT Garage: a place for
“News, ideas and real-world stories about how IT folks
solve their own problems”. If it takes off, maybe it will
become a print magazine, but we don't know yet.
We're still shaking the thing down and signing up
regular contributors.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://garage.docsearls.com

If your company is part of the revolution or you'd like it to be, check out the
site. See what you can learn and take back to the rest of the team. Or, if you've
got your own story to share, write about it on the site.

Back on the Linux Journal site, after constructing this year's Ultimate Linux Box,
Don Marti decided he needed to write about building the ultimate quiet Linux
box. His article “This Linux Box Is Too Loud!” (www.linuxjournal.com/article/
7601) is a roundup of computer-silencing techniques that work under Linux.

Finally, if you appreciated this month's article “Linux Serial Consoles for Servers
and Clusters”, be sure to read Poul E. J. Petersen's Web article, “Project Hydra:
the USB Multiheaded Monster” (www.linuxjournal.com/article/6518). Petersen
writes, “It would be really cool to have a dedicated, remotely accessible console
server with a lot of serial ports connected to all of our servers.” Read about how
they accomplished exactly that using “a readily available USB bus with USB-to-
serial adapters”.

As always, if you or your company has a cool new project or has found a better
way of handling everyday tasks, send me an article proposal at
info@linuxjournal.com.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/7601
http://www.linuxjournal.com/article/7601
http://www.linuxjournal.com/article/6518
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Our experts answer your technical questions.

 Changing Red Hat's Firewall Level

I'm not able to change the security level on either Red Hat 7.2 or 9. It is always
high on both versions and on all three computers on which I have installed
these distributions. I have installed all recent attempts since the first install of
7.2 without Firewall. Firewall still installs and is at High. No one else has had this
problem when I read over installs of 7.2. What am I doing so wrong?

—
Jeff Douglass

jdouglas25@yahoo.com

If you want to change graphically using env, you can click on Start Here from
the desktop, then System Settings and then Security Level. If you are not
running as root, enter root's password and you can change security levels. I
believe something similar is offered during the installation of Red Hat.

—
Usman S. Ansari

uansari@yahoo.com

The firewall portion of Red Hat's installer is a bit confusing. Most importantly, in
the Customize section the Trusted Devices options truly are trusted, allowing
any and all traffic on them. When I first looked at that I assumed if I wanted to
allow incoming SSH on eth0, I would click SSH on Allow incoming as well as
selecting eth0 under trusted—not the case. This gives blanket permissions on
all ports on the selected trusted device.

I'm not sure what went wrong during the installation, but you can change the
configuration afterward by running lokkit to reconfigure the firewall. There also

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:jdouglas25@yahoo.com
mailto:uansari@yahoo.com

is a GUI-based utility that does the same thing called redhat-config-
securitylevel. Run /etc/init.d/iptables restart after making
changes.

—
Timothy Hamlin

thamlin@nmt.edu

Bear in mind that it is not a good idea to operate a system with a relaxed or
disabled security, especially if linked to the Internet. You should learn to
configure the firewall to let through the traffic you need but no more.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Mouse Pointer in VNC?

How can I change the mouse pointer to a big white cursor when displayed
through a VNC viewer?

—
Marcos Machado

pimentamac@hotmail.com

Currently there are several flavors of VNC-based utilities, with many
enhancements and differences among each them. A method you can try is to
change the mouse configuration of your account locally (including the cursor or
pointer size) with a tool like gnome-mouse-properties. Then, later on when you
establish a remote session through VNC, you will get a larger cursor, again,
depending on the VNC client and server you are using.

—
Felipe Barousse Boué

fbarousse@piensa.com

mailto:thamlin@nmt.edu
mailto:fbarousse@piensa.com
mailto:pimentamac@hotmail.com
mailto:fbarousse@piensa.com

 Distributing One POP Account to Multiple Users

We have registered a domain and one POP3 e-mail account with our registrar.
Unfortunately, our DSL ISP (Earthlink) does not permit us to have SMTP port 25
open to send and receive mail directly. All outbound e-mail must be sent to our
ISP's servers, and then they relay them onwards.

We have a small network consisting of six users. All users must see the same e-
mail, thus one POP3 mail account for all. I have Postfix configured to send our
outbound e-mail via the ISP without any problems. I have been playing with
fetchmail to retrieve our inbound e-mail from our remote POP3 account but
have not had any luck getting the e-mail distributed to our local users on our
network. fetchmail polls and downloads the mail no problem, but when it hits
our Postfix server it says:

X-Fetchmail-Warning: recipient address myaddress@earthlink.net didn't match any local name

I have tried to configure aliases using Webmin with success. I guess the
problem is with multidrop distribution.

—
Walter

trance_fool@hotmail.com

Keep things simple. Either get several mail accounts on your ISP's servers—one
per user and configure their workstations to log in to their POP accounts at the
ISP's server, or arrange for open SMTP and POP or IMAP ports to your server.
That way, it will be much easier for you to manage your e-mail without adding
complexity to an already difficult-to-manage service (e-mail). You don't want to
complicate your life when you have to filter spam, viruses and all that crap
while having a home-crafted solution as you are describing in your post.

—
Felipe Barousse Boué

fbarousse@piensa.com

You don't need to use fetchmail multidrop if you want all six users to get copies
of the same mail from the POP account. Just make an “all” alias in /etc/aliases,
which you can do with Webmin, then configure fetchmail to deliver to “all” via
SMTP:

mailto:trance_fool@hotmail.com
mailto:fbarousse@piensa.com

poll pop.example.net:
 user joe there has password secr3t
 is all here

Postfix will do the rest.

—
Don Marti

info@linuxjournal.com

 Adding a Nonstandard Kernel Module

I wanted to update my kernel to include a module that isn't provided by
default. First, I thought I'd try building the kernel identical to what Red Hat
provided. I've built Linux (a few years ago) without a problem, but when I tried
to build the Red Hat configuration, copied from the configs subdirectory, it
failed during the make modules step. The errors don't make sense to me.
There's about 1,200 lines of errors generated. Why doesn't it compile right out
of the box?

—
Chris Carlson

cwcarlson@cox.net

First, you do not have to compile the kernel to add a new module. You simply
can compile with the header files from the running kernel, and it should work
fine. As far as your problem with kernel compilation is concerned, I think you
are missing the make oldconfig step, which would read the config file you
mention. By the way, did you remember to rename it to .config?

—
Usman S. Ansari

uansari@yahoo.com

 ADSL under Knoppix?

What is the easiest way to install an ADSL Internet connection using Knoppix?

—
Andrew Catchpole

mailto:info@linuxjournal.com
mailto:cwcarlson@cox.net
mailto:uansari@yahoo.com

krubby@hotmail.com

That really depends on the kind of ADSL modem you have and on the actual
settings of your ISP's service. This page may be of help: www.rhapsodyk.net/
adsl/HOWTO and this one too: christophe.delord.free.fr/en/adsl/debian.html.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Upgrading from Red Hat to SuSE?

I have tried to upgrade Red Hat 9 to SuSE 9.0 without success. Can this be
done? Or does one need to reinstall the system?

—
L W Randerson

luthrw@att.net

You are trying to upgrade a system installed from one vendor of Linux
distribution to another vendor. It is impossible that this will work. Many times
upgrades from the same vendor have problems. I suggest that you start from
scratch: repartition and make new filesystems. If you have enough disk space,
you can have both SuSE and Red Hat installed at same time on different
partitions.

—
Usman S. Ansari

uansari@yahoo.com

Perhaps it would be possible with a lot (a whole lot) of hacking, but generally,
you don't want to upgrade across different distributions. Red Hat to Red Hat
should work, and SuSE to SuSE, but the layouts are different, and it would be
terrifically complicated. Back up all the user files you have, and do a fresh install
rather than attempt an update.

—
Timothy Hamlin

mailto:krubby@hotmail.com
http://www.rhapsodyk.net/adsl/HOWTO
http://www.rhapsodyk.net/adsl/HOWTO
http://christophe.delord.free.fr/en/adsl/debian.html
mailto:fbarousse@piensa.com
mailto:luthrw@att.net
mailto:uansari@yahoo.com

thamlin@nmt.edu

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:thamlin@nmt.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

Verari QuatreX-64, Paracel BLAST 1.6, Sangoma AFT Cards and more.

Verari QuatreX-64

Verari Systems, formerly RackSaver, introduced the QuatreX-64, a four-way
server powered by the AMD Opteron 850 processor. On SPEC CPU2000
benchmarks, the QuatreX-64 reached a CINT2000 rate of 63.4 base and 68.5
peak, as well as a CFP2000 rate of 47.2 base and 50.5 peak. A platform-
independent server, the QuatreX-64 features up to 32GB of DDR RAM. Up to
four SCSI hard drives with optional removable drive bays are included for
storage needs. The server also uses AMD's Direct Connect Architecture to
reduce bottlenecks by connecting I/O directly to the CPU and connecting CPUs
to one another.

Verari Systems, Inc., 9449 Carroll Park Drive, San Diego, California 92121,
858-874-3800, www.verari.com.

Paracel BLAST 1.6

Version 1.6 of Paracel BLAST, an enhanced version of NCBI BLAST software re-
engineered specifically for large-scale cluster systems, offers native support for
the Opteron 64-bit processor. Designed for pharmaceutical and research
institutions, Paracel BLAST 1.6 automatically handles query packing, database
splitting and distribution of tasks among processors. In conjunction with
Paracel BlastMachine2, a Linux-based cluster that runs on Opteron or Xeon
processors, Paracel BLAST 1.6 can perform large-scale analyses rapidly.

Paracel, Inc., 1055 East Colorado Boulevard, Fifth Floor, Pasadena, California
91106, 888-727-2235, www.paracel.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f1.large.jpg

Sangoma AFT Cards

Sangoma Technologies' new line of Advanced Flexible Telecommunications
(AFT) cards are designed to be easily upgradable to support different telco
interfaces and line speeds. The AFT cards are based on programmable
hardware technology that uses field programmable gate arrays (FPGAs) to
handle line protocols in hardware. An accompanying line of self-configuring
drivers automates the process of line and protocol setup. The first card to be
released is the 2U form factor A101, measuring 4.7" × 2.2". It comes with a T1/
E1/J1 interface and an optional 3.3v/5v PCI card that supports full
channelization of the DS0s. Future upgrades of the A101 will have hardware-
based ATM and SS7 MTP2 support.

Sangoma Technologies Corporation, 50 McIntosh Drive, Suite 120, Markham,
Ontario L3R 9T3, CANADA, 800-388-2475, www.sangoma.com.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f2.large.jpg

CrossOver Office 3.0

CrossOver Office allows users to install Windows applications and plugins in
Linux, without needing a Microsoft operating system license. New for version
3.0 is Linux support for Lotus Notes, MS Outlook XP and MS Project. Also new
for the 3.0 release is CrossOver Office Standard, a version for home users.
CrossOver Office Professional is designed for corporate use and offers
enhancements for enterprise-level deployment as well as the ability to run in
shared multi-user mode. CrossOver Plugin, CodeWeaver's browser plugin
application, now is integrated into all CrossOver products.

CodeWeavers, Inc., 2356 University Avenue West, Suite 420, St. Paul, Minnesota
55114, 651-523-9300, www.codeweavers.com.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f3.large.jpg

InstallShield X

InstallShield X is installation authoring software that enables software
application developers to write industry-standard installations targeting almost
any platform, OS and device. This new offering combines former products
InstallShield DevStudio and InstallShield MultiPlatform and adds new
functionality for handling deployments. InstallShield X also includes Update
Service Starter Edition, which adds updating and user messaging services for
managing software life cycles. Other new InstallShield X features include SQL
server and IIS Web services support, plus enhanced mobile device support for
creating standalone device installations.

InstallShield Software Corporation, 900 National Parkway, Suite 125,
Schaumburg, Illinois 60173, 800-374-4353, www.installshield.com.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f4.large.jpg

Perforce SCM 2004.1

Perforce Software released version 2004.1 of its Software Configuration
Management (SCM) system. Perforce SCM 2004.1 tracks and manages software
development in both small and large work settings. It handles distributed
development and supports developers across more than 50 OSes. The two
main new visualization features are a revision graph representing branch
history and a folder compare feature. The revision graph feature displays a
tree-style graph outlining the branching history of a specific file, including all
points, edits and merges. The folder compare displays two folders side by side
in expandable tree views, allowing users to compare folder structure and file
content. Both components are part of the Perforce Visual Client, a cross-
platform interface for Linux, Mac OS X and Windows.

Perforce Software, Inc., 2320 Blanding Avenue, Alameda, California 94501,
510-864-7400, www.perforce.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/124/7587f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/124/toc124.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Departments
	Ultimate Linux Box 2004
	Paul

Bibaud
	Jesse

Keating
	Cosmo

King
	Eric

Logan
	Micah

Spacek
	Tim

Lee
	Don

Marti
	Recommended Hardware
	Buy or Build?
	Ultimate Linux Box 2004 Hardware
	Conclusions
	Acknowledgements

	Linux on Linksys Wi-Fi Routers
	James

Ewing
	Setting Up the Development Environment
	The Ping Hack
	The wl Command
	Adding Secure Shell (SSH)
	Increasing Flash Memory Compression
	The Wireless Distribution System
	Client Mode Bridging
	The Power of Open Source

	2004 Editors' Choice Awards
	Linux Journal Staff
	Server Hardware: HP ProLiant BL20p G2
	Personal Computer or Workstation: IBM ThinkPad T41
	Security Tool: Clam AntiVirus (AV)
	Web Browser or Client: Mozilla Firefox
	Graphics Software: The GIMP
	Communication Tool: mutt
	Desktop Software: GnuCash
	Software Library or Module: Pango
	Development Tool: BitKeeper
	Database: PostgreSQL
	Mobile Device: Sharp Zaurus SL-6000 PDA
	Game: Really Simple Syndication (RSS)
	Technical Book (tie): Real-World XML and
Hacking the Xbox
	Nontechnical Book: Free Culture
	Technical Web Site: LWN
	Nontechnical or Community Web Site: Groklaw
	Mailing List or Other Support Forum: linux-kernel List
	Project of the Year: Ardour
	Product of the Year: EmperorLinux Toucan

	Linux Serial Consoles for Servers and Clusters
	Matthew E. Hoskins
	Consoles Defined
	Hardware Support
	Software Configuration Overview
	Kernel Configuration
	Bootloader Configuration: GRUB
	Bootloader Configuration: LILO
	Bootloader Configuration: SYSLINUX
	Enabling Logins and Tuning
	Tweaking for Red Hat/Fedora Core
	Cabling
	Putting It All Together
	Specialized Hardware
	Specialized Software

	Distributed Caching with Memcached
	Brad

Fitzpatrick
	Motivation
	Where to Cache?
	Memcached Is Born
	How Memcached Works
	Our Setup
	Speed
	Client Libraries
	Using Memcached
	Alternatives
	Acknowledgements

	Data Acquisition with Comedi
	Caleb

Tennis
	The Comedi Project
	How It Works
	A Lab Example
	A Lab Example
	A Practical Example
	Conclusion

	Declic: Linux 2.6 on the International Space Station
	Taco

Walstra
	μC/OS and Linux
	Insert Definition Files
	Experiment Description in Tcl
	Using the 2.6 Kernel
	Conclusion

	Snooping the USB Data Stream
	Greg Kroah-Hartman

	At the Forge
	Weblogs and Slash
	Reuven
 M.
Lerner
	Creating a Journal
	Comments
	Journal Communities
	Should You Use Slash?
	Conclusion

	Kernel Korner
	Storage Improvements for 2.6 and 2.7
	Paul
 E.
McKenney
	Block-Structured Centralized Storage
	Storage Reconfiguration
	Multipath I/O
	Support for LUNs
	Distributed Filesystems
	Invalidating Pages
	NFS Lock Requests
	Don't Kill the Garbage Collector
	Future Trends
	Acknowledgements
	Legal Statement

	Cooking with Linux
	The Ultimate Cooking Box
	Marcel Gagné

	Linux for Suits
	Missing Pieces
	Doc

Searls

	EOF
	Open Source Is for Pigs
	Evan

Leibovitch

	From the Editor
	Money Talks
	Don Marti

	Letters
	We'll Believe It When We See It
	Reader Wheels
	Boo, Politics
	Yay, Politics
	Hooray for Meng!
	More Success Stories Please
	Another SPF User
	Processor Count Correction
	Photo of the Month: /bin/cat
	Little Box Puts Old Hardware on the Net
	Penguin Love

	UpFront
	diff -u: What's New in Kernel Development
	Zack Brown

	Linux Audio Conference 2004
	Dave Phillips

	LJ Index—August 2004
	Who New? Qunu
	Doc Searls

	Linux 2.6-Based Box Set: SuSE 9.1 Professional
	Don Marti

	They Said It

	On the Web
	Tune-up for IT at Doc's Garage
	Heather Mead

	Best of Technical Support
	Changing Red Hat's Firewall Level
	Mouse Pointer in VNC?
	Distributing One POP Account to Multiple Users
	Adding a Nonstandard Kernel Module
	ADSL under Knoppix?
	Upgrading from Red Hat to SuSE?

	New Products
	Verari QuatreX-64
	Paracel BLAST 1.6
	Sangoma AFT Cards
	CrossOver Office 3.0
	InstallShield X
	Perforce SCM 2004.1

